首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro cultures of Berberis buxifolia were established using thidiazuron (4.5, 23 and 45 mM) or picloram (4 and 40 mM) as plant growth regulators for sustaining growth. For producing berberine, a two-stage culture was performed. In the first step, thidiazuron or picloram were used for biomass production followed by the production stage where benzylaminopurine (4.4 mM) was added as a plant growth regulator. Berberine yields (102 mg g−1 DW) and in vitro shoot cultures (200 mg g−1 DW) were significantly lower than those of whole plants in the field (416 mg g−1 DW). The highest productivity (0.18 mg 1−1 day−1) was attained using picloram (either 4 on 40 mM) in the first stage for producing biomass.  相似文献   

2.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

3.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

4.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

5.
The objective of this study was to improve the biological water–gas shift reaction for producing hydrogen (H2) by conversion of carbon monoxide (CO) using an anaerobic thermophilic pure strain, Carboxydothermus hydrogenoformans. Specific hydrogen production rates and yields were investigated at initial biomass densities varying from 5 to 20 mg volatile suspended solid (VSS) L−1. Results showed that the gas–liquid mass transfer limits the CO conversion rate at high biomass concentrations. At 100-rpm agitation and at CO partial pressure of 1 atm, the optimal substrate/biomass ratio must exceed 5 mol CO g−1 biomass VSS in order to avoid gas–liquid substrate transfer limitation. An average H2 yield of 94 ± 3% and a specific hydrogen production rate of ca. 3 mol g−1 VSS day−1 were obtained at initial biomass densities between 5 and 8 mg VSS−1. In addition, CO bioconversion kinetics was assessed at CO partial pressure from 0.16 to 2 atm, corresponding to a dissolved CO concentration at 70°C from 0.09 to 1.1 mM. Specific bioactivity was maximal at 3.5 mol CO g−1 VSS day−1 for a dissolved CO concentration of 0.55 mM in the culture. This optimal concentration is higher than with most other hydrogenogenic carboxydotrophic species.  相似文献   

6.
Asparagus racemosus is an important monocot medicinal plant that is in great demand for its steroidal saponins called shatavarins. This study was initiated to optimize the conditions for production of shatavarins in cell cultures of A. racemosus in a modified Murashige and Skoog (MS) medium supplemented with six different combinations of growth regulators. Biomass accumulation was correlated with saponin production over a 30-d culture cycle. Biomass and saponin accumulation patterns were dependent on combinations of growth regulators and the pH of the medium. Maximum levels of saponin and biomass accumulation were recorded on day 25 of the culture cycle within a pH range of 3.4 to 5.6. Total saponin produced by the in vitro cultures was 20-fold higher than amounts produced by cultivated plants. Saponin accumulation was not a biomass-associated phenomenon; cultures which showed the highest biomass accumulation were not the highest saponin accumulators. Maximum biomass (28.30 ± 0.29 g l−1) and maximum levels of shatavarin IV(11.48 ± 0.61 mg g−1) accumulation was found using a medium containing 2.0 mg l−1 2,4-D, 2 g l−1 casein hydrolysate and 0.005% pectinase. The highest levels of sarsapogenin, secreted and intracellular (4.02 ± 0.09 mg g−1), accumulated using a medium containing 1.0 mg l−1 NAA, 1.0 mg l−1 2,4-D, 0.5 mg l−1 BAP, 2 g l−1 casein hydrolysate and 0.005% pectinase, after 25 d. Shatavarins were secreted into the medium and can be isolated easily for further purification.  相似文献   

7.
Microalgal lipids are the oils of future for sustainable biodiesel production. However, relatively high production costs due to low lipid productivity have been one of the major obstacles impeding their commercial production. We studied the effects of nitrogen sources and their concentrations on cell growth and lipid accumulation of Neochloris oleoabundans, one of the most promising oil-rich microalgal species. While the highest lipid cell content of 0.40 g/g was obtained at the lowest sodium nitrate concentration (3 mM), a remarkable lipid productivity of 0.133 g l−1 day−1 was achieved at 5 mM with a lipid cell content of 0.34 g/g and a biomass productivity of 0.40 g l−1 day−1. The highest biomass productivity was obtained at 10 mM sodium nitrate, with a biomass concentration of 3.2 g/l and a biomass productivity of 0.63 g l−1 day−1. It was observed that cell growth continued after the exhaustion of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen pools such as chlorophyll molecules. The relationship among nitrate depletion, cell growth, lipid cell content, and cell chlorophyll content are discussed.  相似文献   

8.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

9.
Gross primary production (GPP) and respiration (R) in an intertidal Zostera noltii (Hornemann, 1832) community were estimated each month from in situ CO2 flux measurements during the emersion period in the Bay of Morlaix (France). Simultaneously, the Chlorophyll a biomass of Z. noltii leaves, associated epiphytes and sediment within the benthic chambers were also monitored. The significant positive exponential relationship established between R and the maximum daily temperature emphasized that temperature was a good predictor of seasonal variation in the community R in Z. noltii bed. In contrast, the amplitude of the fitted curve on GPP was low and represented <25% of the annual mean value (90.9 ± 15.2 mgC m−2 h−1). The Chlorophyll a biomass of sediment was high (133.70 ± 22.96 mg m−2) but it was likely constituted by detritus which did not contribute much to the community GPP. The Chlorophyll a biomass of associated epiphytes was higher in winter and varied over the year inversely with Z. noltii. Therefore, the asynchronous dynamic of primary producers could support a constant rate of production at community scale over the year.  相似文献   

10.
The purpose of this paper is to present biomass and nutrient uptake data from Neochloris oleoabundans production in an open trough system. The growth medium used was BG11, temperature ranged from 16.7 °C to 25.3 °C, and pH ranged from 5.52 to 9.94 because the customary pH increase during algal biomass production was moderated by incoming CO2 gas streams (atmospheric, 2%, 4%, and 6% CO2). Peak concentrations of algal biomass ranged from 643 to 970 mg L−1, specific growth rates ranged from 0.15 to 0.37 day−1, and doubling times ranged from 4.8 to 1.9 days. Carbon, nitrogen, and phosphorus were incorporated into the biomass at 0.05%, 8.3%, and 54% of supplied amounts. Open growth systems supplemented with CO2 should be designed to regulate medium pH within the range of 6.3 to 7.1. Future research should examine various media and alternative carbon sources to decrease doubling times, increase peak concentrations, and optimize nutrient uptake.  相似文献   

11.
Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 μg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance.  相似文献   

12.
One application of biotechnology that contributes to sustainable development is the utilization of industrial byproducts as substrates for the production of substances of interest by microorganism. In this work, liquid effluent from tilapia fish processing was used as a substrate for the growth of Rubrivivax gelatinosus with the aim of studying the bacterial photo heterotrophic metabolism. Cultivation conditions included 32 ± 2°C, 1,400 ± 200 lux and 7 days. In the initial days, the best cell mass production (0.273 g l−1 with 72 h), specific growth rate (0.188 h−1 with 48 h) and chemical oxygen demand (COD) decrease (43% with 72 h) were reached. Typical bacterial oxycarotenoids were identified after 3 days of cultivation, averaging 3.03 mg g−1 biomass. Bacterial growth in the effluent during the period of study resulted in pH increase to 7.9, total nitrogen, oils and greases and COD decreases of 22.46, 47.71 and 52%, respectively, and dry cell mass production of 0.18 g l−1. The bacterial growth in the wastewater provided biomass and oxycarotenoids and the removal of pollutant load.  相似文献   

13.
Biomass and lipid productivities of Chlorella vulgaris under different growth conditions were investigated. While autotrophic growth did provide higher cellular lipid content (38%), the lipid productivity was much lower compared with those from heterotrophic growth with acetate, glucose, or glycerol. Optimal cell growth (2 g l−1) and lipid productivity (54 mg l−1 day−1) were attained using glucose at 1% (w/v) whereas higher concentrations were inhibitory. Growth of C. vulgaris on glycerol had a similar dose effects as those from glucose. Overall, C. vulgaris is mixotrophic.  相似文献   

14.
The aim of this study was to investigate the potential of the green microalga Chlorella saccharophila as a source of oil for biodiesel production. We evaluated for the first time, the effect of salinity and/or nitrogen depletion (ND) on cell growth, lipid accumulation and lipid profile in this microalga. The fatty acid methyl esters (FAME) identified for C. saccharophila in this study consisted of C-16:0, C-18:0, C-18:1 cis, and C-18:1 trans. Among these, C-18:1 (indicator of biodiesel quality) was the main FAME found, representing approximately 76 and 80% of total FAME under normal and ND growing conditions, respectively. Under a normal growing condition this microalga showed 154.63 mg l−1 d−1, 63.33 mg l−1 d−1, and 103.73 mg l−1 of biomass productivity, lipid productivity, and FAME yield, respectively. The higher biomass productivity (159.58 mg l−1 d−1), lipid productivity (99.33 mg l−1 d−1), and FAME yield (315.53 mg l−1) were obtained under the ND treatment. In comparison to other related studies, our results suggest that C. saccharophila can be considered as a suitable source of oil for biodiesel production.  相似文献   

15.
Controlled cultivation of marine macroalgal biomass such as Ulva species, notably Ulva lactuca, is currently studied for production of biofuels or functional food ingredients. In a eutrophic environment, this macrophyte is exposed to varying types of nutrient supply, including different and fluctuating levels of nitrogen sources. Our understanding of the influences of this varying condition on the uptake and growth responses of U. lactuca is limited. In this present work, we examined the growth response of U. lactuca exposed to different sources of nitrogen (NH4+; NO3; and the combination NH4NO3) by using photo-scanning technology for monitoring the growth kinetics of U. lactuca. The images revealed differential increases of the surface area of U. lactuca disks with time in response to different N-nutrient enrichments. The results showed a favorable growth response to ammonium as the nitrogen source. The NH4Cl and NaNO3 rich media (50 μM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% day−1 and 9.4 ± 0.72% day−1, respectively. The highest biomass production rate obtained was 22.5 ± 0.24 mg DW m−2·day−1. The presence of ammonium apparently discriminated the nitrate uptake by U. lactuca when exposed to NH4NO3. Apart from showing the significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca as exemplified by assessment of the growth response to two different N-sources.  相似文献   

16.
Naphthenic acids are a complex mixture of organic compounds which naturally occur in crude oil. Low molecular weight components of the naphthenic acids are known to be toxic in aquatic environments and there is a need to better understand the factors controlling the kinetics of their biodegradation. In this study, a relatively low molecular weight naphthenic acid compound (trans-isomer of 4-methyl-1-cyclohexane carboxylic acid) and a microbial culture developed in our laboratory were used to study the biodegradation of this naphthenic acid and to evaluate the kinetics of the process in batch cultures. The initial concentration of trans-4-methyl-1-cyclohexane carboxylic acid (50–750 mg l−1) did not affect the maximum specific growth rate of the bacteria at 23°C (0.52 day−1) to the maximum biodegradable concentration (750 mg l−1). The maximum yield observed at this temperature and at a neutral pH was 0.21 mg of biomass per milligram of substrate. Batch experiments indicated that biodegradation can be achieved at low temperatures; however, the biodegradation rate at room temperature (23°C) and neutral pH was 5 times faster than that observed at 4°C. Biodegradation at various pH conditions indicated a maximum specific growth rate of 1.69 day−1 and yield (0.41 mg mg−1) at a pH of 10.  相似文献   

17.
The effects of seed maturity, media type, carbon source, and organic nutrient additives on seed germination, protocorm development, and plant growth of Paphiopedilum villosum var. densissimum Z. J. Liu et S. C. Chen were investigated. Micropropagation frequency was enhanced through the use of 200-day-old seed, Knudson C (KC) medium, and the presence of both glucose and coconut milk in the medium. The effects of various plant growth regulators on the frequency of shoot organogenesis in four Paphiopedilum species were also investigated. Explants of P. villosum var. densissimum and P. insigne (Lindl.) Stein incubated in the presence of 5 mg l−1 6-benzyladenine (BA) with 0.5 mg l−1 α-naphthalene acetic acid (NAA) and 0.2 mg l−1 BA with 0.1 mg l−1 NAA, respectively, showed a twofold increase in the frequency of shoot organogenesis. For explants of P. bellatulum (Rchb. f.) Stein and P. armeniacum S. C. Chen et F. Y. Liu, the combination of 5.5 mg l−1 BA with 0.5 mg l−1 NAA and 4 mg l−1 BA with 0.1 mg l−1 NAA, respectively, resulted in the highest frequencies of shoot organogenesis.  相似文献   

18.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

19.
Codium fragile (Suringar) Hariot is an edible green alga farmed in Korea using seed stock produced from regeneration of isolated utricles and medullary filaments. Experiments were conducted to reveal the optimal conditions for nursery culture and out-growing of C. fragile. Sampling and measurement of underwater irradiance were carried out at farms cultivating C. fragile at Wando, on the southwestern coast of Korea, from October 2004 to August 2005. Growth of erect thalli and underwater irradiance were measured over a range of depths for three culture stages. During the nursery cultivation stage (Stage I), growth rate was greatest at 0.5 m depth (0.055 ± 0.032 mm day−1), where the average midday irradiance over 60 days was 924 ± 32 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest growth rate occurred at a depth of 2 m (0.113 ± 0.003 mm day−1) with an average irradiance of 248 ± 116 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli achieved the greatest increase in biomass at 1 m depth (7.2 ± 1.0 kg fresh wt m−1). These results suggest that optimal growth at each cultivation stages of C. fragile could be controlled by depth of cultivation rope.  相似文献   

20.
Biotreatment of bagasse effluent using Phanerochaete chrysosporium (white rot fungus) is investigated. This study confirmed that lignin is the major pollutant component in this effluent followed by different carbohydrates. The treatment conditions must be very proper, especially in terms of biomass culture to achieve a successful treatment. The best conditions of temperature, biomass concentration, pH and duration for biotreatment of this effluent were 35°C, 552 mg l−1, 6 and 5 to 9 days, respectively. Under these conditions, a 9 days long treatment reduced by 98.7% the original biochemical oxygen demand (of 2,780 mg l−1) and by 98.5% the dissolved chemical oxygen demand (initial 4,200 mg l−1). Moreover, fungal treatment reduced total dissolved solids from 3,950 to 575 mg l−1 and color from 560 mg l−1 PtCo to 111 mg l−1 PtCo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号