首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An EST sequence, designated JnRAP2-like, was isolated from tissue at the heartwood/sapwood transition zone (TZ) in black walnut (Juglans nigra L). The deduced amino acid sequence of JnRAP2-like protein consists of a single AP2-containing domain with significant similarity to conserved AP2/ERF DNA-binding domains in other species. Based on multiple sequence alignment, JnRAP2-like appears to be an ortholog of RAP2.6L (At5g13330), which encodes an ethylene response element binding protein in Arabidopsis thaliana. Real-time PCR revealed that the JnRAP2-like was expressed most abundantly in TZ of trees harvested in fall when compared with other xylem tissues harvested in the fall or summer. Independent transgenic lines over-expressing JnRAP2-like in Arabidopsis developed dramatic ethylene-related phenotypes when treated with 50 µM methyl jasmonate (MeJA). Taken together, these results indicated that JnRAP2-like may participate in the integration of ethylene and jasmonate signals in the xylem and other tissues. Given the role of ethylene in heartwood formation, it is possible JnRAP2-like expression in the transition zone is part of the signal transduction pathway leading to heartwood formation in black walnut.  相似文献   

3.
Heartwood and sapwood development in maritime pine (Pinus pinaster Ait.) is reported based on 35 trees randomly sampled in four sites in Portugal. It was possible to model the number of heartwood rings with cambial age. The heartwood initiation age was estimated to be 13 years and the rate of sapwood transformation into heartwood was 0.5 and 0.7 rings year–1 for ages below and above 55 years, respectively. Reconstruction of heartwood volume inside the tree stem was made by visual identification by image analysis in longitudinal boards along the sawn surfaces. This volume was integrated into the 3D models of logs and stems developed for this species representing the external shape and internal knots. Heartwood either follows the stem profile or shows a maximum value at 3.8 m in height, on average, while sapwood width is greater at the stem base and after 3 m remains almost constant up the stem. Up to 50% of tree height heartwood represents 17% of stem volume, in 83-year-old trees and 12–13% in 42 to 55-year-old trees. Tree variables such as stem diameter, DBH and tree total height were found to correlate significantly with the heartwood content.  相似文献   

4.
European beech (Fagus sylvatica) facultatively develops red heartwood, which decreases the value of its timber and is difficult to predict in standing trees. According to current theory, the absence of oxygen prevents discolouration in the wood of uninjured trees, and red heartwood forms when oxygen enters the stem through injuries. This theory requires that oxygen concentrations in uncoloured wood are generally very low, and that oxygen can diffuse several metres in the centre of a stem, bypassing the respiring sapwood. Oxygen concentrations measured at different depth in stems with and without red heartwood varied strongly and were generally depleted relative to the air, but rarely close to 0. Concentrations in red heartwood were somewhat, though not significantly higher than in the inner wood of trees without red heartwood. The colour of wood exposed to different oxygen concentrations changed strongly at higher concentrations, but concentrations in standing stems are generally high enough for discolouration. Model calculations suggested that only massive injuries that kill most sapwood at an entry point would allow high amounts of oxygen to penetrate to the core, in which case it may diffuse several metres in the axial direction without being consumed by respiring sapwood. However, given the relatively high diffusion in axial direction, oxygen should spread within a few days, not several years as the development of red heartwood appears to take. These measurements and calculations suggested that, while oxygen is required for beech red heartwood discoloration, it is not the only factor involved but could act by affecting the activity of micro-organisms.  相似文献   

5.
Wood is of critical importance to humans as a primary feedstock for biofuel, fiber, solid wood products, and various natural compounds including pharmaceuticals. The trunk wood of most tree species has two distinctly different regions: sapwood and heartwood. In addition to the major constituents, wood contains extraneous chemicals that can be removed by extraction with various solvents. The composition and the content of the extractives vary depending on such factors as, species, growth conditions, and time of year when the tree is cut. Despite the great commercial and keen scientific interest, little is known about the tree-specific biology of the formation of heartwood and its extractives. In order to gain insight on the molecular regulations of heartwood and its extractive formation, we carried out global examination of gene expression profiles across the trunk wood of black locust (Robinia pseudoacacia L.) trees. Of the 2,915 expressed sequenced tags (ESTs) that were generated and analyzed in the current study, 55.3% showed no match to known sequences. Cluster analysis of the ESTs identified a total of 2278 unigene sets, which were used to construct cDNA microarrays. Microarray hybridization analyses were then performed to survey the changes in gene expression profiles of trunk wood. The gene expression profiles of wood formation differ according to the region of trunk wood sampled, with highly expressed genes defining the metabolic and physiological processes characteristic of each region. For example, the gene encoding sugar transport had the highest expression in the sapwood, while the structural genes for flavonoid biosynthesis were up-regulated in the sapwood-heartwood transition zone. This analysis also established the expression patterns of 341 previously unknown genes.  相似文献   

6.
为探究大花序桉(Eucalyptus cloeziana)心材比例差异显著的不同家系间心边材变异规律,挖掘心材变异相关的候选基因,为珍贵用材树种高效培育及育种利用提供基因资源。以18 a生的2个心材比例差异显著的大花序桉家系为材料(家系1和2),各制作解析木3株,沿着树干以1 m为区间分段截取圆盘,测量东西和南北2个方向的带皮直径、去皮直径、总年轮数、边材年轮数、边材直径,并开展心材和边材径向和轴向分析。同时利用各解析木胸径处初生木质部样品进行DNA混池测序,发掘等位基因频率差异显著的SNP位点并挖掘相关功能基因。结果表明,大花序桉边材宽度和心材半径的方位变异中家系2大于家系1,平均差值分别为0.7和5.5 cm,在随树高的变异中,家系1和2的心材半径和心材年轮数的下降速率分别为0.40和0.64及0.43和0.36。两家系间基本密度差异显著,家系1为0.80~0.82 g/cm3,家系2为0.75~0.78 g/cm3。基本密度与树高、横截面半径和心材半径呈显著负相关,与顺纹抗拉强度、弦面硬度和部分力学性质呈显著正相关。利用DNA混池测序共...  相似文献   

7.
Summary The amounts of glucose, fructose, sucrose, arabinose/galactose, raffinose/stachyose and starch were investigated in the outer sapwood, innermost sapwood, transition zone and heartwood of four stems of Pinus sylvestris L. The samples were taken in October and the determination of the compounds was done enzymatically. It was not possible to distinguish arabinose from galactose and raffinose from stachyose. The amounts of glucose, fructose and sucrose were greatest in the outer sapwood and decreased gradually towards the innermost sapwood and the heartwood. In the outermost heartwood glucose, fructose and sucrose were only present in trace amounts. Raffinose/stachyose showed highest concentrations in the outer sapwood and decreased towards the heartwood. In contrast, the concentrations of arabinose/galactose increased towards the heartwood and the greatest amount was found in the inner heartwood. When identified by thin-layer chromatography (TLC), arabinose was found to be present in greater amounts than galactose. The amount of starch decreased markedly towards heartwood. However, the amounts of sugars in all the studied stems was very variable. The changes in the amounts of carbohydrates in the different zones of the stems and the possible relationships of these phenomena with heartwood formation are discussed.  相似文献   

8.
The amounts of free sterols, steryl esters and lipid phosphorus were determined in the sapwood and heartwood of mature, and in the outer and inner sapwood of young Pinus sylvestris trees. In the mature trees (up to 70 years old) the heartwood contains significantly higher amounts of free sterols than the sapwood. No radial gradient can be demonstrated in the amounts of steryl esters. Lipids extracted from the sapwood contain higher amounts of phosphorus than those from the heartwood. Stems of young Pinus sylvestris trees (up to 13 years old) show in the inner sapwood higher amounts of both free sterols and steryl esters than the peripheral younger wood zone. The inner sapwood of the young stems shows slightly higher amounts of lipid phosphorus than the outer sapwood. The results indicate that Pinus sylvestris accumulates both free sterols and steryl esters in the stems at a very early stage of the life cycle. Sterol accumulation in the innermost parts of the stems seems not to depend on heartwood formation.  相似文献   

9.
Summary Starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were measured in 30-year-old Scots pine (Pinus sylvestris L.) trees during an annual cycle in the sapwood (youngest ten xylem rings). The radial distribution of carbohydrates and lipids was studied in the trunkwood of 90 -to 150-year-old Scots pine trees collected at the end of the growing season. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. The amounts of glucose, fructose, sucrose, and galactose/arabinose in the sapwood were slightly higher in winter than in summer. Raffinose/stachyose increased up to 5-fold during the cold period. At the beginning of the growing season starch amounts rose, and then decreased in summer and autumn. No concentration changes were observed in the total amounts of diacylglycerols and fatty acids throughout the year. Triacylglycerol levels were slightly higher in February than in summer and autumn. Relative frequencies of individual fatty acids were similar in all lipid fractions. Glucose, fructose, sucrose, starch and triacylglycerols disappeared almost entirely at the transition zone from sapwood to heartwood. In contrast, free fatty acids and galactose/arabinose rose in centripetal direction, and diacylglycerols remained constant across trunk cross-sections. The relative amounts of individual fatty acids changed markedly in the free fatty acid fraction and in the triacylglycerols when crossing the sapwood-heartwood boundary. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance, and heartwood formation. The results are compared to those found in needles.  相似文献   

10.
The distribution of the above-ground and below-ground biomass of Scots pine in southern Finland were investigated in trees of different ages (18–212 years) from two types of growth site. Secondly, some structural regularities were tested for their independence of age and growth site. Trees were sampled from dominant trees which could be expected to have a comparable position in stands of all ages. All stands were on sorted sediments. The biomass of the sample trees (18 trees) was divided into needles, branch sapwood and heartwood, stem sapwood and heartwood, stem bark, stump, large roots (diameter >20 cm), coarse roots (five classes) and fine roots. The amount of sapwood and heartwood was also estimated from the below-ground compartments. Trees on both types of growth site followed the same pattern of development of the relative shares of biomass compartments, although the growth rates were faster on the more fertile site. The relative amount of sapwood peaked after canopy closure, coinciding with the start of considerable heartwood accumulation. The relative amount of needles and fine roots decreased with age. The same was true of branches but to a lesser degree. The relative share of the below-ground section was independent of tree age. Foliage biomass and sapwood cross-sectional area were linearly correlated, but there were differences between the growth sites. Needle biomass was linearly correlated with crown surface area. The fine root to foliage biomass ratio showed an increasing trend with tree age.  相似文献   

11.
Summary The lipid and sterol content and composition of three lipid fractions (free fatty acids/ sterols, triacylglycerols and sterol/triterpenoid esters) extracted from three stem discs of Pinus sylvestris were assessed to investigate metabolic changes related to heartwood formation. The wood was separated into (1) cambial zone, (2) outer sapwood, (3) inner sapwood, (4) transition zone, (5) outer heartwood and 6) inner heart-wood. The fractions were separated by thin-layer chromatography (TLC) and analysed by gas-liquid chromatography (GLC). The amount of fatty acids of sapwood triacylglycerols was about 1.5% (dry wt.) but a large reduction occurred in the transition zone. In contrast, noticeable amounts of free fatty acids were present only in the heart-wood. The most important fatty acids in the sapwood fractions were 16:0, 18:0, 18:1, 18:2 (the dominant fatty acid in all fractions), 18:3 and 20:3. Together 18:1 and 18:2 formed about 70% of the total triacylglycerol fatty acids. Of the sterol/ triterpenoid esters, 18:2 and 18:3 were predominant. The fatty acid composition of all fractions changed in the transition zone. The sterols found were sitosterol, stigmastanol, campesterol and campestanol. The amount of sterol esters increased towards the heartwood, and the amount of free sterols was lowest in the inner sapwood. Sitosterol was the dominant sterol in both free sterols and sterol esters.  相似文献   

12.
Elucidation of the mechanisms involved in long-distance water transport in trees requires knowledge of the water distribution within the sapwood and heartwood of the stem as well as of the earlywood and latewood of an annual ring. X-ray computed tomography is a powerful tool for measuring density distributions and water contents in the xylem with high spatial resolution. Ten- to 20-year-old spruce (Picea abies L. KARST.) and oak (Quercus robur) trees grown in the field were used throughout the experiments. Stem and branch discs were collected from different tree heights, immediately deep frozen, and used for the tomographic determinations of spatial water distributions. Results are presented for single-tree individuals, demonstrating heartwood and sapwood distribution throughout their entire length as well as the water relations in single annual rings of both types of wood. Tree rings of the sapwood show steep water gradients from latewood to earlywood, whereas those of the heartwood reflect water deficiency in both species. Although only the latest two annual rings of the ringporous species are generally assumed to transport water, we found similar amounts of water and no tyloses in all rings of the oak sapwood, which indicates that at least water storage is important in the whole sapwood.  相似文献   

13.
Summary The distributions of reserve carbohydrates and of three dominant heartwood extractives were determined in the trunkwood of Robinia pseudoacacia L. The trees were cut at different times of the year (September, November, January, and April). With the exception of the tree felled in January, all trunks exhibited highest contents of nonstructural storage carbohydrates (glucose, fructose, sucrose, and starch) in the youngest, outermost sapwood zone. With increasing depth of the trunk, the levels of carbohydrates decreased. At the sapwood-heartwood transition zone, only trace amounts of nonstructural carbohydrates were present. The heartwood itself contained no storage material. The wood zones of different ages of the trees cut in September, November, and January exhibited glucose/fructose ratios of approximately 1. In April, however, there was a shift to glucose. In the youngest sapwood the amounts of soluble sugars were higher in the earlythan in the latewood. Older zones of the sapwood and the sap-wood-heartwood transition zone showed the opposite behaviour. Three main wood extractives of Robinia were characterized and quantified: the flavanonol dihydrorobinetin (DHR), the flavonol robinetin (ROB) and a hydroxycinnamic acid derivative (HCA). Only DHR was present — in very low amounts — in the younger sapwood of all trunks investigated. Higher amounts (>1 mol/g dry weight) of this compound and the HCA were present in the sapwood-heartwood transition zone. DHR augmented within the heartwood up to a more or less constant level. HCA increased towards the heartwood and decreased again in the inner heartwood parts. ROB appeared in the innermost parts of the sapwood-heartwood transition zone and reached maximum values in older parts of the heart-wood. The results indicate that starch is hydrolyzed at the sapwood-heartwood boundary and thus represents a primary major source of hydroxycinnamic acid and flavonoid synthesis.Dedicated to Prof. Meinhart H. Zenk on the occasion of his 60th birthday  相似文献   

14.
Heartwood development and other functional changes in stem conductance in response to water stress in radiata pine were investigated using two contrasting climatic areas (high-altitude sub-alpine vs. warm–dry inland) of the Hume region of New South Wales, Australia. The study included mature (34.5–36.5 years old) and young stands (10–11 years old) measured under normal climate and during an extreme drought. The effect of water stress on heartwood development was examined using sapwood percentage, sapwood saturation, development of dry sapwood and evidence of cavitation in sapwood. Trees at the warm–dry site developed heartwood at faster rates than on the high-altitude site. At breast height, the mature stands of the warm–dry site had 8–14 % less sapwood. Extensive cavitation towards the sapwood/heartwood boundary occurred in some of the mature and young stands on the warm–dry site. We postulated that in water-limiting environments, cavitation of the inner sapwood precedes heartwood formation and is an adaptation mechanism that regulates stem conductance capacity and thus water use in the tree. The drought of 2006 led to decreases in moisture associated with cavitation not previously reported for radiata pine and demonstrated the drought hardiness of the species. In the warm–dry site, breast-height sapwood saturation dropped to 58 and 82 % for suppressed and average-sized trees in a mature unthinned stand; and 75–78 % for two young stands. These saturation levels, however, only imply average values as some cells cavitated whilst others were fully saturated. Cavitation occurred in a localized fashion affecting small to large groups of cells.  相似文献   

15.
The mechanism of heartwood formation in Cryptomeria japonica D. Don has long been studied since heartwood formation is a fundamental physiological feature of trees. In this study, the water distribution in the xylem of C. japonica was investigated at the cellular level to reveal the role of water distribution in the xylem during heartwood formation. Samples were taken from different heights of each trunk, in which the phases of heartwood formation differed. These were designated as SIH, which consisted of sapwood, intermediate wood, and heartwood; SI, which consisted of sapwood and intermediate wood but no heartwood; and S-all, which consisted entirely of sapwood. Cryo-scanning electron microscopic observations of the heartwood-formed (SIH) and non-heartwood-formed (SI and S-all) xylem revealed different patterns of water distribution changes in tracheids between the latewood and earlywood. In the latewood, almost all tracheids were filled with water in all areas from the sapwood to the heartwood (98–100% of tracheids had water in their lumina). In the earlywood, however, the water distribution differed between the sapwood (95–99%), intermediate wood (7–12%), and heartwood (4–100%). Many of the tracheids in the xylem, where the sapwood changed to intermediate wood lost water. In the heartwood, some tracheids remained empty, while others were refilled with water. These results suggest that the water distribution changes in individual tracheids are closely related to heartwood formation. Water loss from tracheids may be an important factor inducing heartwood formation in the xylem of C. japonica.  相似文献   

16.
Dendrochronology is a well-established dating method for wooden objects, but due to surface processing of construction timber or natural degradation the dating of historical wood often relies on a prediction of the number of missing rings based on sapwood statistics. Since Scots pine (Pinus sylvestris L.) is one of the most common tree species in north-western Europe, the absence of reliable sapwood statistics and models for the prediction of missing sapwood rings for pine samples is remarkable. We have therefore produced sapwood statistics based on data from 776 pine trees with ages from 15 to 345 years. The material consists of both living trees and historical timber, with varying growth rates, geographic settings, and from different soil types. When the whole material is considered, the average age of the trees is 103 years, and the number of sapwood rings is 54 ± 15 (1 SD), but range from 18 to 129. Trees less than 100-years in age contained 46 ± 11 (1 SD) sapwood rings and had an average tree-ring width (TRW) of 1.76 mm. With increasing age, the average TRW decreased while the number of sapwood rings increased. The average TRW of 101–200-year-old trees is 0.99 mm while the samples contained 63 ± 12 (1 SD) sapwood rings. For trees older than 201 years, the average TRW is 0.64 mm while the number of sapwood rings increased to 85 ± 16 (1 SD). The two most important factors in determining the number of sapwood rings for a given tree when only heartwood statistics are available proved to be (i) the number of heartwood rings and (ii) the average TRW of the heartwood rings. For incomplete samples, we have therefore developed a statistical model based on the sample’s heartwood rings (number and average width) to compute a prediction interval for the total number of rings. The sapwood and heartwood statistics suggest a statistical model for the number of sapwood rings with mean that increase with the number of heartwood rings. Furthermore, the average number of sapwood rings decreases with the mean width of the heartwood rings. However, the predictive power of the mean width is limited when the number of heartwood rings has already been taken into account. Thus, we suggest making predictions for the number of sapwood rings using only the number of heartwood rings. Predictions of the number of sapwood rings based on the statistical model where convincing in the case of the three different datasets that were analysed. The certainty in these predictions was such that the width of the 80% and 95% prediction intervals ranged 28–34 and 45–52 sapwood rings, respectively. Additionally, we demonstrate how make predictions when there is information about the number of remaining sapwood rings in a given sample. To make the sapwood model available, we present a free online R package for fitting our models and an online software dashboard.  相似文献   

17.
  • The wood economics spectrum provides a general framework for interspecific trait–trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co‐varies together with elevation, tree growth and height at the within‐species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs).
  • In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables.
  • The variation in wood density reported in this study was narrow (ca. 0.4–0.6 g cm?3) relative to global density variation (ca. 0.3–1.0 g cm?3). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density.
  • Negative across‐species trends found in the growth–wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density.
  相似文献   

18.
 Radial distribution of soluble phenolics was investigated at different heights in stems of Juglans nigra, J. regia and hybrids J. nigra 23 × J. regia. Four major phenolic compounds were studied: hydrojuglone glucoside (HJG), quercitrin (QUER) and two unknown compounds characterized as two ellagic acid derivatives E1 and E2. HJG and E1 content increased gradually in the sapwood, peaked in the sapwood-heartwood transition zone, and decreased drastically in the heartwood. QUER was accumulated preferentially around the transition zone, and its content was relatively low in the outer part of the sapwood and in the inner part of the heartwood. E2 content was low in the sapwood and increased in the heartwood. The heartwood formation was marked by the accumulation of new soluble compounds. The relationship between wood extractives and wood colour were evaluated and discussed. HJG was considered to be a major precursor of heartwood colour providing chromophores through hydrolysis (deglucosylation), oxidation and polymerization processes. Received: 2 September 1997 / Accepted: 23 November 1997  相似文献   

19.
Summary The activities of two key enzymes in flavonoid biosynthesis, phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) and chalcone synthase (CHS, E.C. 2.3.1.74) were determined in the trunkwood of Robinia pseudoacacia L. The trees under investigation were cut at different times of the year (September, November, January and April). At all times PAL is active, both in the youngest wood layer (the outermost growth ring) and at the sapwood heartwood boundary. On the other hand, CHS is active exclusively in the vicinity of the heartwood boundary. The results indicate that PAL is involved both in the formation of lignin (outermost annual ring), and in flavonoid biosynthesis (heartwood boundary). Highest activity of both PAL and CHS could be measured at the sapwood heartwood boundary in the tree felled in November, indicating that heartwood formation was occurring mainly at that time. The flavonoids accumulated in the heartwood are obviously formed in situ and seem to be transported only to a minor extent — if at all — via the phloem and the ray cells to the heartwood.  相似文献   

20.
QuantitativeChangesinMainParametersofSecondaryXylemduringAgingProcessinPinusbugeanaLINJin-xing;(林金星),LINYue-hui;(林月惠),WEILin-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号