首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Gram-positive rod-shaped bacterium isolated on nutrient agar plates incubated at 28 ± 2°C. The identity of the bacterium was confirmed by sequencing of the 16S rRNA gene and it reveals that it shares highest similarity with Bacillus thioparus CECT 7196T (99.08%). It was capable of growing at temperatures ranging from 4 to 40°C, but optimum growth was observed at 28 ± 2°C. Strain NII-0902 is endowed with multiple plant growth promotion attributes such as phosphate solubilization, Indole acetic acid (IAA), siderophore and HCN production, which were expressed differentially at sub-optimal temperatures (5–40°C). It was able to solubilize phosphate (17.7 μg ml−1), and produce IAA (139.7 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). Bacillus sp. NII-0902 has a potential ability to colonize roots visualized by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots and truly supported by scanning electron micrograph. Hence, it is proposed that, Bacillus thioparus sp. NII-0902 could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   

2.
A phosphate solubilizing and antagonistic bacterial strain, isolated from a Western Ghat forest soil in Kerala province, India (designated as NII-0906), showed cold tolerance and grew from 10 to 37°C (optimum temperature 30°C). It was a Gram-positive, rod shaped, 0.8–1.6 μm in size, and exhibited tolerance to a wide pH range (5–12; optimum 7.0) and salt concentration up to 7% (w/v). The isolate showed maximum similarity with Exiguobacterium marinum TF-80T based on 16S rRNA analysis. It solubilized tricalcium phosphate under in vitro conditions. The phosphate solubilization was estimated along a temperature range (5–40°C), and maximum activity (84.7 μg mL−1 day−1) was recorded at 30°C after 10 days of incubation. The phosphate solubilizing activity coincided with a concomitant decrease in pH of the medium. The isolate also exhibited antifungal activity against phytopathogenic fungi in Petri dish assays and produced siderophore and hydrogen cyanide. The strain’s plant growth promotion properties were demonstrated through a cowpea-based bioassay under greenhouse conditions. The bacterial inoculation resulted in significant increment in plant root, stem and as well as in plant biomass. Further, scanning electron microscopic study revealed the root colonization in cowpea. These results could offer potential perspective for the strain to be used as plant growth-promoting rhizobacteria, which could be used as an inoculant for regional crops.  相似文献   

3.
Two novel nicotine-degrading bacterial strains were isolated from tobacco waste and identified as Acinetobacter sp. TW and Sphingomonas sp. TY based on morphology, physiological and biochemical tests, Biolog analysis and 16S rDNA sequencing. The 16S rDNA sequences have been deposited in GenBank under the accession numbers FJ753401 for TW and FJ754274 for TY. The best culture conditions for nicotine degradation were 25–37°C and pH 7.0–8.0 for strain TW and 25–30°C and pH 6.0–7.0 for strain TY. Under the best conditions, the cell growth and nicotine-degradation kinetics of the two isolates were assessed, and 1.0 g/l nicotine was completely degraded within 12 and 18 h for TW and TY, respectively. Moreover, the presence of four widely-used commercial neonicotinoid insecticides in the medium had no effects on nicotine degradation by TW; among the four tested neonicotinoids, only thiamethoxam significantly delayed nicotine degradation by TY. TW and TY were also able to degrade selected neonicotinoids. This is the first report of nicotine degradation by Acinetobacter sp. and Sphingomonas sp. This study showed that these two newly isolated bacteria may be suitable for the disposal of tobacco waste and the reduction of nicotine in tobacco leaves.  相似文献   

4.
A potential bacterial strain designated as NII-0928 isolated from Western ghat forest soil with multiple plant growth promoting attributes, and it has been identified and characterized. Plant growth promoting traits were analyzed by determining the P-solubilization efficiency, Indole acetic acid production, HCN, siderophore production and growth in nitrogen free medium. It was able to solubilize phosphate (76.6 μg ml−1), and produce indole acetic acid (58.9 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). 16S rRNA gene sequencing reveals the identity of the isolate as Serratia nematodiphila with which it shares highest sequence similarity (99.4%). Seed bacterization with black pepper cuttings in greenhouse trials using Sand: Soil: FYM with three individual experimental sets with their respective control showed clearly the growth promoting activity. Hence, Serratia nematodiphila NII-0928 is a promising plant growth promoting isolate showing multiple PGPR attributes that can significantly influence black pepper cuttings. The result of this study provides a strong basis for further development of this strain as a bioinoculants to attain the desired plant growth promoting activity in black pepper growing fields.  相似文献   

5.
Diversified group of bacteria were screened for carbonic anhydrase (CA) activity. Significant CA activity was found in crude enzyme extracts of Enterobacter and Aeromonas isolates while minimal or negligible CA activity was observed in case of Shigella and Klebsiella spp. Optimization and characterization study of potent CA producing isolates revealed that the maximum enzyme activity of 3.86 EU/ml was observed in E. taylorae and the optimum pH range for enzyme stability was found to be 7.5–9.0 along with an optimum temperature range of 35–50 °C. The molecular mass of CA was 29-kDa indicating α-type with periplasmic and cytosolic location. Present investigation for the first time reports CA in diversified genus and optimized parameters for enhanced production of CA in Enterobacter sp. & Aeromonas sp. from fresh water bodies that inturn lay down grounds for exploitation of CA from E. taylorae as an efficient catalyst for CO2 sequestration within a bioreactor.  相似文献   

6.
In this study, a homogenous polysaccharide (FSP), with an average molecular weight of 9.08 × 104 Da, was isolated from Forsythia suspense and its antibacterial potential against Enterobacter cloacae producing SHV‐12 ESBL was investigated. Growth kinetics, in vitro competition and biofilm formation experiments demonstrated that SHV‐12 ESBL contributed to a fitness benefit to E cloacae strain. The antibacterial activity of FSP (2.5, 5.0 and 10.0 μg/mL) was tested against E cloacae bearing SHV‐12 ESBL gene using bacterial sensitivity, agar bioassay and agar well diffusion assays. It was found that the addition of FSP demonstrated potent antibacterial activities against this bacterial as showed by the decrease of bacterial growth and the increase of the inhibition zone diameter. Furthermore, SHV‐12 ESBL gene expression was decreased in E cloacae strain following different FSP treatment in a concentration‐dependent manner. In conclusion, these data showed that FSP exhibited potent good antibacterial activity against E cloacae producing SHV‐12 ESBL via inhibition of SHV‐12 ESBL gene expression, which may promote the development of novel natural antibacterial agents to treat infections caused by this drug‐resistant bacterial pathogen.  相似文献   

7.
The interaction of type-I β-lactamases fromEnterobacter cloacae with diverse β-lactam compounds was examined. The ability of penicillin and cefoxitin to induce β-lactamase production in this strain was assessed. The effect of β-lactamase inhibitors was measured on β-lactamase extracts and on intact cells.E. cloacae 78 strain is a stably derepressed mutant showing limited susceptibility to a number of antibiotics except imipenem. Imipenem would therefore be the appropiate choice for therapy of infections caused by stably derepressed mutants ofEnterobacter sp. producing type-I β-lactamases.  相似文献   

8.
A phosphate-solubilizing bacterial strain NII-0909 isolated from the Western ghat forest soil in India was identified as Micrococcus sp on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production. It was able to solubilize (122.4 μg of Ca3PO4 ml?1), and produce IAA (109 μg ml?1) at 30 °C. P-solubilizing activity of the strain NII-0909 was associated with the release of organic acids and a drop in the pH of the NBRIP medium. HPLC analysis detected two organic acids in the course of P-solubilization. A significant increase in the growth of cow pea was recorded for inoculations under controlled conditions. Scanning electron microscopic study revealed the root colonization of strain on cow pea seedlings. These results demonstrate that isolates NII-0909 has the promising PGPR attributes to be develop as a biofertilizer to enhance soil fertility and promote the plant growth.  相似文献   

9.
Three pentachlorophenol (PCP) degrading bacterial strains were isolated from sediment core of pulp and paper mill effluent discharge site. The strains were continuously enriched in mineral salts medium supplemented with PCP as sole source of carbon and energy. One of the acclimated strains with relatively high PCP degradation capability was selected and characterized in this study. Based on morphology, biochemical tests, 16S rDNA sequence analysis and phylogenetic characteristics, the strains showed greatest similarity with Acinetobacter spp. The strain was identified as Acinetobacter sp. ISTPCP-3. The physiological characteristics and optimum growth conditions of the bacterial strain were investigated. The results of optimum growth temperature revealed that it was a mesophile. The optimum growth temperature for the strain was 30°C. The preferential initial pH for the strain was ranging at 6.5–7.5, the optimum pH was 7. The bacterium was able to tolerate and degrade PCP up to a concentration of 200 mg/l. Increase in PCP concentration had a negative effect on biodegradation rate and PCP concentration above 250 mg/l was inhibitory to its growth. Acinetobacter sp. ISTPCP-3 was able to utilize PCP through an oxidative route with ortho ring-cleavage with the formation of 2,3,5,6-tetrachlorohydroquinone and 2-chloro-1,4-benzenediol, identified using gas chromatograph–mass spectrometric (GC–MS) analysis. The degradation pathway followed by isolated bacterium is different from previously characterized pathway.  相似文献   

10.
Four gram-negative, aerobic, motile, non-spore, forming rods with a wide pH and temperature range for growth (pH 7.0–11.0, optimum pH 8.0; 20–45°C, optimum 28°C) strains were isolated from root nodules of Sphaerophysa salsula and characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the four strains formed a new lineage related to the genus Rhizobium and the sequence similarities between the isolate and the most related type strain Rhizobium giardinii was 96.5%. These strains also formed a distinctive group from the reference strains for defined Rhizobium species based on housekeeping gene sequences (atpD and recA), BOX-PCR fingerprinting, phenotypic features and symbiotic properties. The representative strain CCNWGS0238T has DNA-DNA relatedness of less than 33.4% with the most closely related species R. giardinii. It is therefore proposed as a new species, Rhizobium sphaerophysae sp. nov., with isolate CCNWGS0238T (=ACCC17498T = HAMBI3074T) as the type strain.  相似文献   

11.
Out of nineteen bacteria screened from the tannery waste dump site, the most effective isolate, strain DU17 was selected for Cr(VI) reduction process among the non-pathogenic once. Based on 16S rRNA gene sequence analysis, the bacterium was identified as Enterobacter sp. DU17. Its amplified Cr(VI) reductase gene showed maximum homology with flavoprotein of Enterobacter cloacae. Enterobacter sp. DU17 reduced Cr(VI) maximally at 37 °C and pH 7.0. Various co-metals, electron (e) donors and inhibitors were tested to study their effect on Cr(VI) reduction. In presence (0.2% each) of glucose and fructose, Enterobacter sp. DU17 reduced Cr(VI) completely after 16 and 20 h, respectively. Since the concentration of total Cr was invariable after remediation as detected through AAS analysis, this experiment disclosed that responsible operation was associated with extracellular Cr(VI) reduction process rather than uptake mechanism. Multiple antibiotic resistance index of 0.08 for this bacterium was very low as compared to standard risk assessment value of 0.20. With high Cr(VI) reducing capability, non-pathogenicity and antibiotic sensitivity, Enterobacter sp. DU17 is found to be very efficient in removing Cr(VI) toxicity from the environment.  相似文献   

12.
In this work, a mild, efficient bioconversion of 2,2-dimethylcyclopropanecarbonitrile (DMCPCN) to 2,2-dimethylcyclopropanecarboxamide (DMCPCA) in distilled water system was developed. The isolate FW815 was screened using the enrichment culture technique, displaying strong DMCPCN hydratase activity, and was identified as Rhodococcus boritolerans based on morphological, physiological, biochemical tests and 16S rRNA gene sequencing. Cultivation outcomes indicated that R. boritolerans FW815 was a neutrophile, with a growth optimum of 28–32°C; its DMCPCN hydratase belonged to the Fe-type family, and was most active at 38–42°C, pH 7.0, with maximal activity of 4.51 × 104 U g−1 DCW. R. boritolerans FW815 was found to be DMCPCA amidase-negative, eliminating the contamination of dimethylcyclopropanecarboxylic acid. Moreover, it displayed high activity and acceptable reusability in the non-buffered distilled water system, comparable to those in pH 7.0 phosphate buffer (50.0 mmol l−1).  相似文献   

13.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

14.
Bacterial cellulose finds novel applications in biomedical, biosensor, food, textile and other industries. The optimum fermentation conditions for the production of cellulose by newly isolated Enterobacter amnigenus GH-1 were investigated. The strain was able to produce cellulose at temperature 25–35°C with a maximum at 28°C. Cellulose production occurred at pH 4.0–7.0 with a maximum at 6.5. After 14 days of incubation, the strain produced 2.5 g cellulose/l in standard medium whereas cellulose yield in the improved medium was found to be 4.1 g/l. The improved medium consisted of 4% (w/v) fructose, 0.6% (w/v) casein hydrolysate, 0.5% (w/v) yeast extract, 0.4% (w/v) disodium phosphate, and 0.115% (w/v) citrate. Addition of metal ions like zinc, magnesium, and calcium and solvents like methanol and ethanol were found to be stimulatory for cellulose production by the strain. The strain used natural carbon sources like molasses, starch hydrolysate, sugar cane juice, coconut water, coconut milk, pineapple juice, orange juice, and pomegranate juice for growth and cellulose production. Fruit juices can play important role in commercial exploitation of bacterial cellulose by lowering the cost of the production medium.  相似文献   

15.
In order to select bacterial strains effectively secreting mannanase activity for the production of prebiotic mannooligosaccharides, a two-step screening procedure was performed. Enriched cultures from isolation medium containing copra meal were primary screened on an isolation agar medium containing 1% locust bean gum (LBG), which resulted in 48 mannanase-producing bacterial isolates with significant clearing zones on the mannan-containing agar. However, only nine isolates showed appreciable mannanase activities against copra meal in their culture supernatants (0.054–0.185 U/mg of protein) as determined in a standard assay based on the detection of reducing sugars released from this substrate. The isolates CW2-3 and ST1-1 displayed the highest activity against LBG and copra meal, respectively. Copra mannan hydrolysates that were obtained by using crude mannanase from these nine isolates were further used for a secondary screening towards a growth-enhancing activity on Lactobacillus reuteri and inhibitory activity against Escherichia coli as well as Salmonella Enteritidis, resulting in 0.09–2.15 log CFU/ml enhancing activity and low inhibitory activity of 0.46–1.78 log CFU/ml as well as 0.37–1.72 log CFU/ml, respectively. The hydrolysate of CW2-3 mannanase showed the highest enhancing activity of 2.15 log CFU/ml while isolate ST1-1 was most effective with respect to growth inhibition against E. coli E010 and S. Enteritidis S003 with 0.76 and 1.61 log CFU/ml, respectively. Based on morphological, physical, biochemical and genetics properties, isolates CW2-3 and ST1-1 were identified as Klebsiella oxytoca and Acinetobacter sp., respectively. Crude mannanase activity from these two strains was characterized preliminarily. The pH optima of mannanase activity from Klebsiella oxytoca CW2-3 and Acinetobacter sp. ST1-1 were 7 and 6, respectively. The enzymes were stable at 4°C over a pH range of 3–6 and 3–10, respectively.  相似文献   

16.
A new native feather-degrading bacterium has been isolated from the faeces of the agamid lizard Calotes versicolor, collected from the Beijing Zoo in China. The isolate, which has been identified as Bacillus sp. 50-3 based on morphological and biochemical and 16S rDNA tests, was shown to degrade native feather completely at 37°C and pH 7.0 within 36 h when using chicken feathers as the sole carbon and nitrogen source. Bacillus sp. 50-3 presented optimum growth at 37°C and pH 7.0 in feather meal medium. Under these conditions, the maximum keratinase activity (680 ± 25 U/ml) was also achieved. The keratinase of Bacillus sp. 50-3 was active over a broad range of pH values and temperatures toward azokeratin, and presented an optimum pH and temperature of 10.0 and 60°C, respectively. Furthermore, it was relatively heat-and alkali-stable. Inhibitor studies showed that it seemed to belong to the serine-metalloprotease type. Therefore, the enzyme from Bacillus sp. 50-3 is a novel, high alkaline keratinase, suggesting its potential use in biotechnological processes.  相似文献   

17.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

18.
We report the isolation of nitrogen fixing, phytohormone producing bacteria from sugarcane and their beneficial effects on the growth of micropropagated sugarcane plantlets. Detection of the nitrogen fixing bacteria by ARA-based MPN (acetylene reduction assay-based most probable number) method indicated the presence of up to 106 bacteria per gram dry weight of stem and 107 bacteria per gram dry weight of root of field-grown sugarcane. Two nitrogen fixing bacterial isolates were obtained from stem (SC11, SC20) and two from the roots (SR12, SR13) of field-grown plants. These isolates were identified as Enterobacter sp. strains on the basis of their morphological characteristics and biochemical tests. The isolate SC20 was further characterized by 16S rRNA sequence analysis, which showed high sequence similarity to the sequence of Enterobacter cloacae and Klebsiella oxytoca. All the isolates produced the phytohormone indoleacetic acid (IAA) in pure culture and this IAA production was enhanced in growth medium containing tryptophan. The bacterial isolates were used to inoculate micro-propagated sugarcane in vitro where maximum increase in the root and shoot weight over control was observed in the plantlets inoculated with strain SC20. By using the15N isotope dilution technique, maximum nitrogen fixation contribution (28% of total plant nitrogen) was detected in plantlets inoculated with isolate SC20.  相似文献   

19.
A mutant designated as UV-3 was obtained from wild-type Enterobacter aerogenes 10293 through u.v. radiation. The activities of α-acetolactate decarboxylase (Ald), lactate dehydrogenase (Ldh) and diacetyl reductase (Dr) in UV-3 were strongly attenuated, with the lowest activities at pH 7.0–7.5, and temperature between 36 and 39°C. Compared to the wild-type, the yield of diacetyl by UV-3 was increased 18.7-fold, up to 1.05 ± 0.01 g l−1. Acetoin and ethanol productions were decreased by 48.4 and 71.4%, respectively, but acetate yield was increased by 34.6%. Optimum medium for diacetyl production by UV-3 contained 10% glucose, 0.5% peptone, 0.5% yeast extract powder, 0.01% (NH4)2SO4, 0.1% citric acid, 0.2% MnSO4 and 0.2% MgSO4, and this was determined by one-factor-at-a-time approach. Data from the five level central composite designs demonstrated that initial pH of 7.0, temperature of 37°C and rotational speed of 180 rev/min were optimum processing parameters for diacetyl production. The maximum yield of diacetyl could reach 1.35 g l−1 in a 5-l bioreactor. These results showed an enhancement of the non-enzymatic oxidative decarboxylation of α-acetolactate and a decrease in the activities of Ald, Ldh and Dr as a consequence of diacetyl accumulation in UV-3.  相似文献   

20.
Geobacillus, a bacterial genus, is represented by over 25 species of Gram-positive isolates from various man-made and natural thermophilic areas around the world. An isolate of this genus (M-7) has been acquired from a thermal area near Yellowstone National Park, MT and partially characterized. The cells of this organism are globose (ca. 0.5 μ diameter), and they are covered in a matrix capsule which gives rise to elongate multicelled bacilliform structures (ranging from 3 to 12 μm) as seen by light and atomic force microscopy, respectively. The organism produces unique petal-shaped colonies (undulating margins) on nutrient agar, and it has an optimum pH of 7.0 and an optimum temperature range of 55–65°C. The partial 16S rRNA sequence of this organism has 97% similarity with Geobacillus stearothermophilus, one of its closest relatives genetically. However, uniquely among all members of this genus, Geobacillus sp. (M-7) produces volatile organic substances (VOCs) that possess potent antibiotic activities. Some of the more notable components of the VOCs are benzaldehyde, acetic acid, butanal, 3-methyl-butanoic acid, 2-methyl-butanoic acid, propanoic acid, 2-methyl-, and benzeneacetaldehyde. An exposure of test organisms such as Aspergillus fumigatus, Botrytis cinerea, Verticillium dahliae, and Geotrichum candidum produced total inhibition of growth on a 48-h exposure to Geobacillus sp.(M-7) cells (ca.107) and killing at a 72-h exposure at higher bacterial cell concentrations. A synthetic mixture of those available volatile compounds, at the ratios occurring in Geobacillus sp. (M-7), mimicked the bioactivity of this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号