首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Huang Z  Yan DP  Ge BX 《Cellular signalling》2008,20(11):2002-2012
The adaptor protein paxillin plays an important role in cell migration. Although the c-Jun amino-terminal kinase (JNK) phosphorylation of paxillin on Ser 178 has been found to be critical for cell migration, the precise mechanism by which JNK regulates cell migration is still not very clear. Here, the migration of human corneal epithelial (HCE) cells was used to determine which signaling pathways are involved in EGF-induced paxillin phosphorylation. Paxillin was phosphorylated on Tyr 31 and Tyr 118 after induction of migration by EGF in HCE cells. Specific inhibition of JNK activation by inhibitor SP600125 or overexpression of a dominant-negative JNK mutant not only blocked EGF-induced cell migration, but also eliminated tyrosine phosphorylation of paxillin on Tyr 31 and Tyr 118. HCE cells overexpressing paxillin-S178A mutant also exhibited lower mobility, and reduced phosphorylation of Tyr 31 and Tyr 118. However, paxillin-S178A-inhibited cell migration can be rescued by overexpression of paxillin-Y31E/Y118E mutant. Importantly, inhibition of JNK by SP600125 or overexpression of paxillin-S178A mutant prevented the association of FAK with paxillin. Taken together, these results suggest that phosphorylation of paxillin on Ser 178 by JNK is required for the association of paxillin with FAK, and subsequent tyrosine phosphorylation of paxillin.  相似文献   

3.
PS-341, also known as Velcade or Bortezomib, represents a new class of anticancer drugs which has been shown to potently inhibit the growth and/or progression of human cancers, including head and neck squamous cell carcinoma (HNSCC). Although it has been logically hypothesized that NF-kappaB is a major target of PS-341, the underlying mechanism by which PS-341 inhibits tumor cell growth is unclear. Here we found that PS-341 potently activated the caspase cascade and induced apoptosis in human HNSCC cell lines. Although PS-341 could inhibit NF-kappaB activation, the inhibition of NF-kappaB was not sufficient to initiate apoptosis in HNSCC cells. Using biochemical and microarray approaches, we found that proteasome inhibition by PS-341 induced endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in HNSCC cells. The inhibition of ROS significantly suppressed caspase activation and apoptosis induced by PS-341. Consistently, PS-341 could not induce the ER stress-ROS in PS-341-resistant HNSCC cells. Taken together, our results suggest that in addition to the abolishment of the prosurvival NF-kappaB, PS-341 might directly induce apoptosis by activating proapoptotic ER stress-ROS signaling cascades in HNSCC cells, providing novel insights into the PS-341-mediated antitumor activity.  相似文献   

4.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.  相似文献   

5.
6.
Daxx is required for stress-induced cell death and JNK activation   总被引:5,自引:0,他引:5  
Daxx has been implicated in the modulation of apoptosis in response to various stimuli. In the nucleus, Daxx interacts and colocalizes with the promyelocytic leukemia protein (PML) into the PML-nuclear body. Moreover, overexpressed Daxx positively modulates FAS-ligand and TGFbeta-induced apoptosis. However, recent reports indicate that Daxx can also act as an antiapoptotic factor. As most studies on the role of Daxx in cell death have been conducted using tumour cell lines, we analysed the function of Daxx in physiological settings. We found that Daxx is induced upon exposure to ultraviolet (UV) irradiation and hydrogen peroxide treatment. We employed RNA interference to downregulate Daxx in primary fibroblasts. Remarkably, Daxx-depleted cells are resistant to cell death induced by both UV irradiation and oxidative stress. Furthermore, the downregulation of Daxx results in impaired MKK/c-Jun-N-terminal kinase (JNK) activation. This is the first evidence that Daxx promotes cell death and JNK activation in physiological conditions.  相似文献   

7.
Diva is a novel proapoptotic member of the Bcl-2 protein family which binds apoptosis activating factor-1 (APAF-1). Diva is identical with Boo which was identified as a novel antiapoptotic Bcl-2 family protein. Here, we report that Diva promotes the cell cycle exit of human glioma cells in response to serum deprivation and inhibits apoptosis of these cells induced by CD95 ligand or chemotherapeutic drugs. In glioma cells, Diva interferes with apoptotic signaling downstream of cytochrome c release, but upstream of caspase activation, consistent with an inhibitory effect on the mitochondrial amplification step involving the apoptosome and APAF-1.  相似文献   

8.
Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H2O2)-induced cell death are unclear. This study examined the effects of H2O2 on the activation of MAPK and AP-1 by exposing the cells to H2O2 generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H2O2 affected the activities of MAPK differently according to the method of H2O2 exposure. H2O2 increased the AP-1-DNA binding activity in these cells, where continuously generated H2O2 led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH2-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H2O2-induced cell death. However, the suppression of H2O2-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H2O2. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H2O2 may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H2O2 than the concentration of this agent.  相似文献   

9.
Colorectal carcinomas (CRCs) with P53 mutations have been shown to be resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising therapeutic target for drug-resistant tumors. In the present study, we tested the effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in combination with 5-FU in the HCT15 p53 mutant apoptosis-resistant CRC cell line. The involvement of UA in autophagy and its in vivo efficacy were evaluated.Our data show that UA induces apoptosis independent of caspases in HCT15 cells and enhances 5-FU effects associated with an activation of c-jun N-terminal kinase (JNK). In this cell line, where this compound has a more pronounced effect on the induction of cell death compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell death induced by UA. UA also modulated autophagy by inducing the accumulation of LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution of autophagy on JNK-dependent induction of cell death by UA. By using nude mice xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing tumor growth rate.In conclusion, this study shows UA's anticancer potential both in vitro and in vivo. Induction of cell death and modulation of autophagy in CRC-resistant cells were shown to involve JNK signaling.  相似文献   

10.
Exposure of human Jurkat T cells to JNK inhibitor IX (JNKi), targeting JNK2 and JNK3, caused apoptotic DNA fragmentation along with G2/M arrest, phosphorylation of Bcl-2, Mcl-1, and Bim, Δψm loss, and activation of Bak and caspase cascade. These JNKi-induced apoptotic events were abrogated by Bcl-2 overexpression, whereas G2/M arrest, cyclin B1 up-regulation, Cdk1 activation, and phosphorylation of Bcl-2 family proteins were sustained. In the concomitant presence of the G1/S blocking agent aphidicolin and JNKi, the cells underwent G1/S arrest and failed to induce all apoptotic events. The JNKi-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by the Cdk1 inhibitor. Immunofluorescence microscopic analysis revealed that mitotic spindle defect and prometaphase arrest were the underlying factors for the G2/M arrest. These results demonstrate that JNKi-induced mitochondrial apoptosis was caused by microtubule damage-mediated prometaphase arrest, prolonged Cdk1 activation, and phosphorylation of Bcl-2 family proteins in Jurkat T cells.  相似文献   

11.
Autophagy can promote cell survival or death, but the molecular basis of its dual role in cancer is not well understood. Here, we report that glucosamine induces autophagic cell death through the stimulation of endoplasmic reticulum (ER) stress in U87MG human glioma cancer cells. Treatment with glucosamine reduced cell viability and increased the expression of LC3 II and GFP-LC3 fluorescence puncta, which are indicative of autophagic cell death. The glucosamine-mediated suppression of cell viability was reversed by treatment with an autophagy inhibitor, 3-MA, and interfering RNA against Atg5. Glucosamine-induced ER stress was manifested by the induction of BiP, IRE1α, and phospho-eIF2α expression. Chemical chaperon 4-PBA reduced ER stress and thereby inhibited glucosamine-induced autophagic cell death. Taken together, our data suggest that glucosamine induces autophagic cell death by inducing ER stress in U87MG glioma cancer cells and provide new insight into the potential anticancer properties of glucosamine.  相似文献   

12.
Progression through the G2/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions.  相似文献   

13.
Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.  相似文献   

14.
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH2-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.  相似文献   

15.
16.
The present study was undertaken to determine the molecular mechanism by which kaempferol induces cell death in human glioma cells. Kaempferol resulted in loss of cell viability and inhibition of proliferation in a dose- and time-dependent manner, which were largely attributed to cell death. Kaempferol caused an increase in reactive oxygen species (ROS) generation and the kaempferol-induced cell death was prevented by antioxidants, suggesting that ROS generation is involved in kaempferol-induced cell death. Kaempferol caused depolarization of mitochondrial membrane potential. Western blot analysis showed that kaempferol treatment caused a rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. The ERK inhibitor U0126 and the Akt inhibitor LY984002 increased the kaempferol-induced cell death and overexpression of MEK, the upstream kinase of ERK, and Akt prevented the cell death. The expression of anti-apoptotic proteins XIAP and survivin was down-regulated by kaempferol and its effect was prevented by overexpression of MEK and Akt. Kaempferol induced activation of caspase-3 and kaempferol-induced cell death was prevented by caspase inhibitors. Taken together, these findings suggest that kaempferol results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of XIAP and survivin regulating by ERK and Akt.  相似文献   

17.
18.
19.
Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation   总被引:2,自引:0,他引:2  
We sought to characterize the role of upstream kinases in the regulation of the MAP3 kinase MEKK1 and the potential impact on signaling to MAP kinase cascades. We find that the MAP4 kinase PAK1 phosphorylates the amino terminus of MEKK1 on serine 67. We show that serine 67 lies in a D domain, which binds to the c-Jun-NH(2)-terminal kinase/stress-activated protein kinases (JNK/SAPK). Serine 67 is constitutively phosphorylated in resting 293 cells, but is dephosphorylated following exposure to stress stimuli such as anisomycin and UV irradiation. Phosphorylation of this site inhibits binding of JNK/SAPK to MEKK1. Thus, we propose a mechanism by which the MEKK1-dependent JNK/SAPK pathway is negatively regulated by PAK through phosphorylation of serine 67.  相似文献   

20.
To assess the role of nuclear factor kappaB (NFKB) in cellular radiosensitivity, three different IkappaB-alpha (also known as NFKBIA) expression plasmids, i.e., S-IkappaB (mutations at (32, 36)Ser), Y-IkappaB (a mutation at (42)Tyr), and SY-IkappaB, were constructed and introduced into human brain tumor M054 cells. The clones were named as M054-S8, M054-Y2 and M054-SY4, respectively. Compared to the parental cell line, M054-S8 and M054-Y2 cells were more sensitive to X rays while M054-SY4 cells exhibited the greatest sensitivity. After treatment with N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor, the X-ray sensitivity of M054-S8 and M054-SY4 cells did not change, while that of M054-Y2 cells and the parental cells was enhanced. An increase in X-ray sensitivity accompanied by a decrease in translocation of NFKB to the nucleus in parental cells was observed after treatment with pervanadate, an inhibitor of tyrosine phosphatase, as well as in M054-S8 and M054-SY4 cells. Repair of potentially lethal damage (PLD) was observed in the parental cells but not in the clones. Four hours after irradiation (8 Gy), the expression of TP53 and phospho-p53 ((15)Ser) was induced in the parental cells but not in M054-S8, M054-Y2 or M054-SY4 cells. Our data suggest that inhibition of IkappaB-alpha phosphorylation at serine or tyrosine acts independently in sensitizing cells to X rays. NFKB may play a role in determining radiosensitivity and PLD repair in malignant glioma cells; TP53 may also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号