首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Dynamin is one of the major proteins involved in endocytosis. First identified 50 years ago in a genetic screen in Drosophila melanogaster, it has become a central player in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis, as well as other important cellular processes such as actin remodelling. Decades of work using biochemical and structural studies, cell-free assays, live cell imaging, acute inhibition and genetic studies have led to important insights on its mode of action. Dynamin is a remarkable mechano-GTPase, which can do a lot to membranes on its own but which is, in cells, at the centre of a vast protein and lipid network and cannot work in isolation. This review summarizes the main features of dynamin structure and function and its central role in membrane remodelling events, and give an update on the latest results.  相似文献   

2.
    
Receptor-mediated endocytosis is a major gate for pathogens into cells. In this study, we analyzed the trafficking of human adenovirus type 2 and 5 (Ad2/5) and the escape-defective temperature-sensitive Ad2-ts1 mutant in epithelial cancer cells. Ad2/5 and Ad2-ts1 uptake into endosomes containing transferrin, major histocompatibility antigen 1 and the Rab5 effector early endosome antigen 1 (EEA1) involved dynamin, amphiphysin, clathrin and Eps15. Cointernalization experiments showed that most of the Ad2/5 and Ad2-ts1 visited the same EEA1-positive endosomes. In contrast to Ad2/5, Ad2-ts1 required functional Rab5 for endocytosis and lysosomal transport and was sensitive to the phosphatidyl-inositol-3 (PI3)-kinase inhibitor wortmannin or the ubiquitin-binding protein Hrs for sorting from early to late endosomes. Endosomal escape of Ad2 was not affected by incubation at 19 degrees C, which blocked membrane sorting in early endosomes and inhibited Ad2-ts1 transport to lysosomes. Unlike Semliki Forest Virus (SFV), sorting of Ad2-ts1 to late endosomes was independent of Rab7 and Ad2/5 infection independent of EEA1. The data indicate that Ad2/5 and Ad2-ts1 use an invariant machinery for clathrin-mediated uptake to early endosomes. We suggest that the infectious Ad2 particles are either directly released from early endosomes to the cytosol or sorted by a temperature-insensitive and PI3-kinase-independent mechanism to an escape compartment different from late endosomes or lysosomes.  相似文献   

3.
    
Beta-arrestins (betaarrs) play a central role in the regulation of G-protein-coupled receptors (GPCRs). Their binding to phosphorylated activated GPCRs induces a conformational transition to an active state resulting in the release of their flexible C-terminal tail. Binding sites for clathrin and the adaptor protein (AP)-2 clathrin adaptor complex are then unmasked, which drive the recruitment of betaarrs-GPCR complexes into clathrin-coated pits (CCPs). A conserved isoleucine-valine-phenylalanine (IVF) motif of the C-terminal tail controls betaarr activation through intramolecular interactions. Here, we provide structural, biochemical and functional evidence in living cells that the IVF motif also controls binding to AP-2. While the F residue is directly involved in AP-2 binding, substitutions of I and V residues, markedly enhanced affinity for AP-2 resulting in active betaarr mutants, which are constitutively targeted to CCPs in the absence of any GPCR activation. Conformational change and endocytic functions of betaarrs thus appear to be coordinated via the complex molecular interactions established by the IVF motif.  相似文献   

4.
HIV-1 Nef is a critical AIDS progression factor yet underexplored target for antiretroviral drug discovery. A recent high-throughput screen for pharmacological inhibitors of Nef-dependent Src-family kinase activation identified a diphenylpyrazolodiazene hit compound with submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound, known as ‘B9’, binds directly to Nef and inhibits its dimerization in cells as a possible mechanism of action. Here were synthesized a diverse set of B9 analogs and identified structural features essential to antiretroviral activity. Chemical modifications to each of the three rings present in the parent compound were identified that did not compromise antiviral action. These analogs will guide the development of next-generation compounds with appropriate pharmacological profiles for assessment of antiretroviral activity in vivo.  相似文献   

5.
The diffusive properties of biomacromolecules within the aqueous phase of polyacrylamide gels are described. High quality NMR spectra can be obtained under such conditions. As compared to water, a fivefold reduction in the translational diffusion constant, but only a 1.6-fold decrease (1.4-fold increase) in amide-15N T2 (T1) are observed for human ubiquitin within a 10% acrylamide gel. Weak alignment of the solute macromolecules can be achieved within such gels by vertical or radial compression or by the embedding of magnetically oriented purple membrane fragments. The methods are applied to derive residual dipolar couplings for human HIV-1 Nef and ubiquitin.  相似文献   

6.
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.  相似文献   

7.
Clathrin triskelia consist of three heavy chains and three light chains (LCs). Green fluorescent protein (GFP)‐tagged LCs are widely utilized to follow the dynamics of clathrin in living cells, but whether they reflect faithfully the behavior of clathrin triskelia in cells has not been investigated yet thoroughly. As an alternative approach, we labeled purified LCs either with Alexa 488 or Cy3 dye and compared them with GFP‐tagged LC variants. Cy3‐labeled light chains (Cy3‐LCs) were microinjected into HeLa cells either directly or in association with heavy chains. Within 1–2 min the Cy3‐LC heavy chain complexes entered clathrin‐coated structures, whereas uncomplexed Cy3‐LC did not within 2 h. These findings show that no significant exchange of LCs occurs over the time–course of an endocytic cycle. To explore whether GFP‐tagged LCs behave functionally like endogenous LCs, we characterized them biochemically. Unlike wild‐type LCs, recombinant LCs with a GFP attached to either end did not efficiently inhibit clathrin assembly in vitro, whereas Cy3‐ and Alexa 488‐labeled LC behaved similar to wild‐type LCs in vitro and in vivo. Thus, fluorochromated LCs are a valuable tool for investigating the complex behavior of clathrin in living cells.  相似文献   

8.
    
《Developmental cell》2021,56(22):3146-3159.e5
  相似文献   

9.
细胞外基质的各种分子经细胞膜进入真核细胞是一个复杂的过程。细胞内吞是通过细胞质膜的变形运动将细胞外物质转运入细胞内的过程。不同的细胞内吞途径需要不同的蛋白质分子参与,引起不同的信号转导通路。目前认为细胞内吞和膜转运是细胞对其信号转导过程的一种精密的组织安排,细胞内吞在细胞信号转导,维持机体动态平衡方面起着重要作用。细胞内吞途径通常可以分为网格蛋白依赖的内吞和非网格蛋白依赖的内吞,其中后者包括陷窝蛋白依赖和非陷窝蛋白依赖的内吞,以及巨胞饮介导的内吞。本文将就这几种主要细胞内吞途径及与细胞信号转导通路关系的研究进展予以介绍。  相似文献   

10.
建立HIV-1的调节基因Nef基因在内皮细胞稳定表达的细胞株ECV304-Nef,为研究Nef对血管内皮细胞生物学活性的影响奠定试验基础。构建真核表达载体pcDNA3.1(+)-Nef,将其质粒和pcDNA3.1(+)质粒(阴性对照)分别转染血管内皮细胞ECV304,G418筛选。通过RT-PCR检测NefmRNA在细胞中的表达;细胞免疫荧光法检测Nef蛋白的表达及定位;Western blotting检测Nef蛋白的特异性表达,获得稳定表达的细胞株。构建的重组质粒pcDNA3.1(+)-Nef经BamHI和EcoRI双酶切鉴定,得到的片段大小与理论值相符,分别为载体的5400bp和目的基因的621bp。测序结果显示碱基序列与GenBank(登录号:K03455)序列相同。转染细胞经G418筛选后获得稳定表达Nef的ECV304细胞株,RT-PCR显示转染pcD-NA3.1(+)-Nef质粒的ECV304细胞出现621bp条带,对照组无目的条带出现;荧光显微镜下观察转染pcDNA3.1(+)-Nef质粒的ECV304细胞表达的Nef蛋白主要定位于细胞质中。Western blotting结果显示,转染pcDNA3.1(+)-Nef质粒的ECV304细胞约27kD处检测到目的条带,表明pcDNA3.1(+)-Nef表达正确。  相似文献   

11.
12.
Although many proteins have been shown to participate in ligand‐stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr‐phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant‐negative mutants to inhibit endocytosis of EGFR. RNAi‐mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C‐terminal tail of Tom1L1 contains a novel clathrin‐interacting motif responsible for interaction with the C‐terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked‐down cells. These results suggest that EGF triggers a transient Grb2/Shc‐mediated association of EGFR with Tyr‐phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand–receptor complex.  相似文献   

13.
The adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2. Using nuclear magnetic resonance and mutational studies, we identified WXXF-based motifs as major ligands for a site on the alpha-ear previously shown to bind the DPW-bearing proteins epsin 1/2. We also defined the determinants that allow for specific binding of the alpha-ear motif to AP-2 as compared to those that allow a highly related WXXF-based motif to bind to the ear domains of AP-1/GGAs. Intriguingly, placement of acidic residues around the WXXF cores is critical for binding specificity. These studies provide a structural basis for the specific recruitment of accessory proteins to appropriate sites of clathrin-coated vesicle formation.  相似文献   

14.
Viruses often exploit autophagy, a common cellular process of degradation of damaged proteins, organelles, and pathogens, to avoid destruction. HIV-1 dysregulates this process in several cell types by means of Nef protein. Nef is a small HIV-1 protein which is expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HIV-Associated Neurocognitive Disorders (HAND). In order to explore its effect in the CNS with respect to autophagy, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFA) using an adenovirus vector (Ad-Nef). We observed that Nef expression triggered the accumulation of autophagy markers, ATG8/LC3 and p62 (SQSMT1). Similar results were obtained with Bafilomycin A1, an autophagy inhibitor which blocks the fusion of autophagosome to lysosome. Furthermore co-expression of tandem LC3 vector (mRFP-EGFP-LC3) and Ad-Nef in these cells produced mainly yellow puncta (mRFP+, EGFP+) strongly suggesting that autophagosome fusion to lysosome is blocked in PHFA cells in the presence of Nef. Together these data indicate that HIV-1 Nef mimics Bafilomycin A1 and blocks the last step of autophagy thereby helping HIV-1 virus to avoid autophagic degradation in human astrocytes.  相似文献   

15.
During clathrin‐mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin‐binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile α‐motif (SAM) domain and shows a propensity to oligomerize. By co‐immunoprecipitation, Sla1p binds to clathrin and self‐associates in vivo. Mutations in the clathrin‐binding motif that abolish clathrin binding and structure‐based mutations in SHD2 that impede self‐association result in endocytosis defects and altered dynamics of Sla1p assembly at the sites of endocytosis. These results define a novel mechanism for negative regulation of clathrin binding by an adaptor and suggest a role for SAM domains in clathrin‐mediated endocytosis.  相似文献   

16.
The mu 2 subunit of the AP2 complex is known to be phosphorylated in vitro by a copurifying kinase, and it has been demonstrated recently that mu 2 phosphorylation is required for transferrin endocytosis (Olusanya, O., P.D. Andrews, J.R. Swedlow, and E. Smythe. 2001. Curr. Biol. 11:896-900). However, the identity of the endogenous kinase responsible for this phosphorylation is unknown. Here we identify and characterize a novel member of the Prk/Ark family of serine/threonine kinases, adaptor-associated kinase (AAK)1. We find that AAK1 copurifies with adaptor protein (AP)2 and that it directly binds the ear domain of alpha-adaptin in vivo and in vitro. In neuronal cells, AAK1 is enriched at presynaptic terminals, whereas in nonneuronal cells it colocalizes with clathrin and AP2 in clathrin-coated pits and at the leading edge of migrating cells. AAK1 specifically phosphorylates the mu subunit in vitro, and stage-specific assays for endocytosis show that mu phosphorylation by AAK1 results in a decrease in AP2-stimulated transferrin internalization. Together, these results provide strong evidence that AAK1 is the endogenous mu 2 kinase and plays a regulatory role in clathrin-mediated endocytosis. These results also lend support to the idea that clathrin-mediated endocytosis is controlled by cycles of phosphorylation/desphosphorylation.  相似文献   

17.
    
AAK1, the adaptor-associated kinase 1, phosphorylates the μ2 subunit of AP2 and regulates the recruitment of AP2 to tyrosine-based internalization motifs found on membrane-bound receptors. AAK1 overexpression specifically inhibits the AP2-dependent internalization of transferrin receptor and LDL-receptor related protein by functionally sequestering AP2 (Conner and Schmid. J Cell Biol 2003; 162: 773). However, while AAK1 stably associates with AP2 and specifically targets the μ2 subunit in vitro , μ2 phosphorylation in vivo was not altered by overexpression of either wild-type or kinase-inactive AAK1. These results suggested that AAK1 might be tightly regulated in the cell. Here, we report that AAK1 is an atypical kinase that is rate limited by its stable association with AP2 and that clathrin stimulates μ2 phosphorylation by AAK1. Efficient stimulation of AAK1 by clathrin involves multiple interactions between several domains on AAK1 and both heavy and light chains on clathrin. Importantly, incubation of AAK1 with clathrin cages resulted in even greater stimulation when compared to that of unassembled clathrin triskelia. Collectively, our observations indicate that clathrin function is not limited to structural and/or mechanical roles in endocytic vesicle formation: the stimulatory effects of clathrin on AAK1 activity argue that it also plays a regulatory role by modulating the activity of AP2 complexes through activation of AAK1. We suggest a model in which AAK1 is specifically activated in coated pits to enhance cargo recruitment and efficient internalization.  相似文献   

18.
    
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

19.
AP-2 complexes are key components in clathrin-mediated endocytosis (CME). They trigger clathrin assembly, interact directly with cargo molecules, and recruit a number of endocytic accessory factors. Adaptor-associated kinase (AAK1), an AP-2 binding partner, modulates AP-2 function by phosphorylating its mu2 subunit. Here, we examined the effects of adenoviral-mediated overexpression of WT AAK1, kinase-dead, and truncation mutants in HeLa cells, and show that AAK1 also regulates AP-2 function in vivo. WT AAK1 overexpression selectively blocks transferrin (Tfn) receptor and LRP endocytosis. Inhibition was kinase independent, but required the full-length AAK1 as truncation mutants were not inhibitory. Although changes in mu2 phosphorylation were not detected, AAK1 overexpression significantly decreased the phosphorylation of large adaptin subunits and the normally punctate AP-2 distribution was dispersed, suggesting that AAK1 overexpression inhibited Tfn endocytosis by functionally sequestering AP-2. Surprisingly, clathrin distribution and EGF uptake were unaffected by AAK1 overexpression. Thus, AP-2 may not be stoichiometrically required for coat assembly, and may have a more cargo-selective function in CME than previously thought.  相似文献   

20.
    
Clathrin-coated vesicles (CCV) are necessary for selective transport events, including receptor-mediated endocytosis on the plasma membrane and cargo molecule sorting in the trans-Golgi network (TGN). Components involved in CCV formation include clathrin heavy and light chains and several adaptor proteins that are conserved among plants. Clathrin-dependent endocytosis has been shown to play an integral part in plant endocytosis. However, little information is known about clathrin dynamics in living plant cells. In this study, we have visualized clathrin in Arabidopsis thaliana by tagging clathrin light chain with green fluorescent protein (CLC-GFP). Quantitative evaluations of colocalization demonstrate that the majority of CLC-GFP is localized to the TGN, and a minor population is associated with multivesicular endosomes and the Golgi trans-cisternae. Live imaging further demonstrated the presence of highly dynamic clathrin-positive tubules and vesicles, which appeared to mediate interactions between the TGNs. CLC-GFP is also targeted to cell plates and the plasma membrane. Although CLC-GFP colocalizes with a dynamin isoform at the plasma membrane, these proteins exhibit distinct distributions at newly forming cell plates. This finding indicates independent functions of CLC (clathrin light chains) and dynamin during the formation of cell plates. We have also found that brefeldin A and wortmannin treatment causes distinctly different alterations in the dynamics and distribution of clathrin-coated domains at the plasma membrane. This could account for the different effects of these drugs on plant endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号