首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

2.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ which is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that it may be a general messenger for Ca2+ mobilization in cells. In this study I address questions of whether an intracellular receptor for cADPR exists and, if so, whether it is different from the IP3 receptor. A procedure employing nitrogen decompression was used to homogenize sea urchin eggs, and the Ca2(+)-storing microsomes were separated from mitochondria and other organelles by Percoll density centrifugation. Radioactive cADPR with high specific activity was produced by incubating [32P]NAD+ with the synthesizing enzyme and the product purified by high pressure liquid chromatography. The enzyme was membrane bound and was isolated from dog brain extracts by sucrose density gradient centrifugation. Partial purification of the enzyme was achieved by DEAE ion-exchange chromatography after solubilization with 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate. Specific binding of 32P-labeled cADPR to a saturable site on the Ca2(+)-storing microsomes was detected by a filtration assay. Scatchard analysis indicated a binding affinity of about 17 nM and a capacity of about 25 fmol/mg protein. The binding was not affected by either NAD+ (the precursor) or ADP-ribose (the hydrolysis product) at 0.5 microM but was eliminated by 0.3 microM nonlabeled cADPR. The receptor for cADPR appeared to be different from that of IP3 since IP3 was not an effective competitor at a concentration as high as 3 microM. Similarly, heparin at a concentration that inhibits most of the IP3-induced calcium release from the microsomes did not affect the binding. The binding showed a prominent pH optimum at about 6.7. Calcium at 40 microM decreased the binding by about 50%. These dependencies of the binding on pH and Ca2+ are different from those reported for the IP3 receptor and provide further support that the intracellular receptors for cADPR and IP3 are different.  相似文献   

3.
Determination of endogenous levels of cyclic ADP-ribose in rat tissues   总被引:4,自引:0,他引:4  
Cyclic ADP-ribose (cADPR) is a potent mediator of calcium mobilization in sea urchin eggs. The cADPR synthesizing enzyme is present not only in the eggs but also in various mammalian tissue extracts. The purpose of this study was to ascertain whether cADPR is a naturally occurring nucleotide in mammalian tissues. Rat tissues were frozen and powdered in liquid N2, followed by extraction with perchloric acid at -10 degrees C. [32P]cADPR was prepared and used as a tracer. The acid extracts were chromatographed on a Mono-Q column and cADPR in the fractions were determined by its ability to release Ca2+ from egg homogenates. That the release was mediated by cADPR and not inositol trisphosphate (IP3) in the extracts was shown by the fact that the homogenates, subsequent to Ca2+ release induced by active fractions, were desensitized to authentic cADPR but not to IP3. Furthermore, the Ca2+ release activity was shown to co-elute with [32P]cADPR. The endogenous level of cADPR determined in rat liver is 3.37 +/- 0.64 pmol/mg, in heart is 1.04 +/- 0.08 pmol/mg and in brain is 2.75 +/- 0.35 pmol/mg. These results indicate cADPR is a naturally occurring nucleotide and suggest that it may be a general second messenger for mobilizing intracellular Ca2+.  相似文献   

4.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

5.
Novel mechanism of intracellular calcium release in pituitary cells   总被引:7,自引:0,他引:7  
In sea urchin eggs an enzymatic metabolite of beta-NAD+, called cyclic ADP-ribose (cADPR), is as potent and powerful a releaser of sequestered intracellular Ca2+ as is inositol 1,4,5-trisphosphate (IP3). The enzyme that synthesizes cADPR is present in several vertebrate animal tissues, but the Ca(2+)-releasing activity of cADPR has not been described in mammalian cells. We report here that incubation of beta-NAD+ with cell-free extracts of several rat tissues (including pituitary gland) generates a product which releases intracellular Ca2+ stores in permeabilized rat pituitary GH4C1 cells. This product has the biological characteristics of cADPR (it acts after depletion of the IP3 stores and after blockade of the IP3 receptor by heparin). The response is mimicked, in a concentration-dependent manner, by authentic cADPR and is desensitized by prior incubation with cADPR. We conclude that cADPR is not only synthesized by certain mammalian cells but also acts in such cells to release compartmentalized intracellular Ca2+ by a mechanism that differs from that used by IP3. Therefore, cADPR may serve, in addition to IP3, as a second messenger for intracellular Ca2+ mobilization in mammalian cells.  相似文献   

6.
During fertilization of sea urchin eggs, the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) transiently increases (Ca(2+) transient). Increased [Ca(2+)](i) results from a rapid release from intracellular stores, mediated by one or both of two signaling pathways; inositol 1,4,5-trisphosphate (IP(3)) and IP(3) receptor (IP(3)R) or cyclic GMP (cGMP), cyclic ADP-ribose (cADPR) and ryanodine receptor (RyR). During fertilization, cGMP and cADPR increase preceding the Ca(2+) transient, suggesting their contribution to this. If the RyR pathway contributed to the Ca(2+) transient, its Ca(2+) releasing activity would develop in parallel with that of the IP(3) system during maturation of oocytes. Sea urchin oocytes were cultivated in vitro and Ca(2+) transients induced by photolysis of caged IP(3) or caged cADPR were measured during maturation. Oocytes spontaneously began to maturate in seawater. More than 50% of oocytes underwent germinal vesicle breakdown within 25 h and the second meiosis within 35 h, but it took more than 24 h until they became functionally identical to in vivo-matured eggs. Both IP(3) and cADPR induced Ca(2+) transients comparable to those of in vivo-matured eggs later than 24 h from the second meiosis. However, cADPR induced a small Ca(2+) transient even before meiosis, whereas IP(3) and sperm almost did not.  相似文献   

7.
We investigated the effect of glycolytic pathway intermediaries upon Ca(2+) release induced by cyclic ADP-ribose (cADPR), inositol 1',4', 5-trisphosphate (IP(3)), and nicotinate adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenate. Fructose 1,6, -diphosphate (FDP), at concentrations up to 8 mM, did not induce Ca(2+) release by itself in sea urchin egg homogenate. However, FDP potentiates Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine, caffeine, and palmitoyl-CoA. Furthermore, glucose 6-phosphate had similar effects. FDP also potentiates activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased approximately 3.5 times by addition of 4 mM FDP. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to FDP. The Ca(2+) release mediated by FDP in the presence of subthreshold concentrations of cADPR was inhibited by antagonists of the ryanodine channel, such as ruthenium red, and by the cADPR inhibitor 8-Br-cADPR. However, inhibition of Ca(2+) release induced by IP(3) or NAADP had no effect upon Ca(2+) release induced by FDP in the presence of low concentrations of cADPR. Furthermore, FDP had inhibitory effects upon Ca(2+) release induced by both IP(3) and NAADP. We propose that the state of cellular intermediary metabolism may regulate cellular Ca(2+) homeostases by switching preferential effects from one intracellular Ca(2+) release channel to another.  相似文献   

8.
Various reports have demonstrated that the sphingolipids sphingosine and sphingosine-1-phosphate are able to induce Ca2+ release from intracellular stores in a similar way to second messengers. Here, we have used the sea urchin egg homogenate, a model system for the study of intracellular Ca2+ release mechanisms, to investigate the effect of these sphingolipids. While ceramide and sphingosine-1-phosphate did not display the ability to release Ca2+, sphingosine stimulated transient Ca2+ release from thapsigargin-sensitive intracellular stores. This release was inhibited by ryanodine receptor blockers (high concentrations of ryanodine, Mg2+, and procaine) but not by pre-treatment of homogenates with cADPR, 8-bromo-cADPR or blockers of other intracellular Ca2+ channels. However, sphingosine rendered the ryanodine receptor refractory to cADPR. We propose that, in the sea urchin egg, sphingosine is able to activate the ryanodine receptor via a mechanism distinct from that used by cADPR.  相似文献   

9.
E N Chini 《Journal of applied physiology》2001,91(1):516-21; discussion 504-5
Volatile anesthetics have multiple actions on intracellular Ca(2+) homeostasis, including activation of the ryanodine channel (RyR) and sensitization of this channel to agonists such as caffeine and ryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in many mammalian cells, and cADPR has been proposed to be a second messenger in many signaling pathways. I investigated the effect of volatile anesthetics on the cADPR signaling system, using sea urchin egg homogenates as a model of intracellular Ca(2+) stores. Ca(2+) uptake and release were monitored in sea urchin egg homogenates by using the fluo-3 fluorescence technique. Activity of the ADP-ribosyl cyclase was monitored by using a fluorometric method using nicotinamide guanine dinucleotide as a substrate. Halothane in concentrations up to 800 microM did not induce Ca(2+) release by itself in sea urchin egg homogenates. However, halothane potentiates the Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine. Furthermore, other volatile anesthetics such as isoflurane and sevoflurane had no effect. Halothane also potentiated the activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased about three times by addition of 800 microM halothane. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to halothane. In contrast, all the volatile anesthetics used had no effect on the activity of the enzyme that synthesizes cADPR. I propose that the complex effect of volatile anesthetics on intracellular Ca(2+) homeostasis may involve modulation of the cADPR signaling system.  相似文献   

10.
Both the inositol 1,4,5-trisphosphate (InsP(3)) and ryanodine receptor pathways contribute to the Ca(2+) transient at fertilization in sea urchin eggs. To date, the precise contribution of each pathway has been difficult to ascertain. Evidence has accumulated to suggest that the InsP(3) receptor pathway has a primary role in causing Ca(2+) release and egg activation. However, this was recently called into question by a report implicating NO as the primary egg activator. In the present study we pursue the hypothesis that NO is a primary egg activator in sea urchin eggs and build on previous findings that an NO/cGMP/cyclic ADP-ribose (cADPR) pathway is active at fertilization in sea urchin eggs to define its role. Using a fluorescence indicator of NO levels, we have measured both NO and Ca(2+) at fertilization and establish that NO levels rise after, not before, the Ca(2+) wave is initiated and that this rise is Ca(2+)-dependent. By inhibiting the increase in NO at fertilization, we find not that the Ca(2+) transient is abolished but that the duration of the transient is significantly reduced. The latency and rise time of the transient are unaffected. This effect is mirrored by the inhibition of cGMP and cADPR signaling in sea urchin eggs at fertilization. We establish that cADPR is generated at fertilization, at a time comparable to the time of the rise in NO levels. We conclude that NO is unlikely to be a primary egg activator but, rather, acts after the initiation of the Ca(2+) wave to regulate the duration of the fertilization Ca(2+) transient.  相似文献   

11.
NAADP (nicotinic acid-adenine dinucleotide phosphate)-induced Ca2+ release has been proposed to occur selectively from acidic stores in several cell types, including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca2+ release alters the pH(L) (luminal pH) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not beta-NAD+ or NADP). Like Ca2+ release, the pH(L) change was desensitized by low concentrations of NAADP suggesting it was secondary to NAADP receptor activation. Moreover, this was a direct effect of NAADP upon the acidic stores and not secondary to increases in cytosolic Ca2+ as it was not mimicked by IP3 (inositol 1,4,5-trisphosphate), cADPR (cyclic adenine diphosphoribose), ionomycin, thapsigargin or by direct addition of Ca2+, and was not blocked by EGTA. The results of the present study further support acidic stores as targets for NAADP and for the first time reveal an adjunct role for NAADP in regulating the pH(L) of intracellular organelles.  相似文献   

12.
NAADP receptors   总被引:4,自引:0,他引:4  
Galione A  Ruas M 《Cell calcium》2005,38(3-4):273-280
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a recently described Ca2+ mobilizing messenger. First described in the sea urchin egg, it has been shown to mobilize Ca2+ from intracellular stores. It is a remarkably potent molecule, and recent reports show that its cellular levels change in response to a variety of agonists confirming its role as a Ca2+ mobilizing messenger. In many cases NAADP interacts with other Ca2+ mobilizing messengers such as inositol 1,4,5 trisphosphate (IP3 and cyclic adenosine diphosphate ribose (cADPR) in shaping cytosolic Ca2+ signals. What is not clear is the molecular nature of the NAADP-sensitive Ca2+ release mechanism and its sub-cellular localization. In this review we focus on the recent progress made in sea urchin eggs, which indicates that NAADP activates a novel Ca2+ release channel distinct from the relatively well-characterized IP3 and ryanodine receptors. Furthermore, in the sea urchin egg, the NAADP-sensitive store appears to be separate from the endoplasmic reticulum (ER) and is most likely an acidic store. These findings have also been reinforced by similar findings by some in mammalian cells. Finally, we discuss ongoing strategies to characterise NAADP-binding proteins which will greatly enhance our understanding of NAADP-mediated Ca2+ signalling, and lead to the development of more selective tools to probe the role of this messenger.  相似文献   

13.
A metabolite with intracellular Ca2+-mobilizing activity can be produced by incubating NAD+ with extracts from sea urchin eggs. Structural determination indicates it is a cyclized ADP-ribose, and we have proposed cyclic ADP-ribose as a common name for it. In this study, we addressed the question of how widespread is the occurrence of the synthesizing enzyme for this NAD+ metabolite. Incubation of NAD+ with extracts prepared from rabbit liver resulted in a progressive increase in Ca2+ release activity which was monitored by a biological assay using sea urchin egg homogenates. The half-maximal concentration of NAD+ required was about 1 mM. The reaction was stereospecific, and the extracts were sensitive to protease treatment and heat, as well as alkaline pH of about 9.0, indicating the reaction was catalyzed by a protein. The active metabolite was purified by an identical high pressure liquid chromatography (HPLC) procedure used for cyclic ADP-ribose. Functionally, the liver metabolite behaved similarly to cyclic ADP-ribose. Both discharged the same Ca2+ stores in sea urchin egg homogenates with the same half-maximal effective concentrations. Both were active in inducing the cortical exocytosis reaction when microinjected into sea urchin eggs. That they are indeed identical compounds was demonstrated by structural analyses showing that they coeluted on a Partisil 5 SAX HPLC column and had identical 1H NMR spectra. Mass spectrometry indicated a mass of 540.0529 for the molecular ion (M - H)- of the liver metabolite, which was identical to within 0.74 ppm of cyclic ADP-ribose. Furthermore, their collisional activated decomposition mass spectra were virtually superimposable. Extracts from rabbit brain, heart, spleen, and kidney were all active in producing similar Ca2+-releasing metabolites which could be isolated by the same HPLC procedure and had similar elution times on both the mixed mode and the Partisil 5 SAX column. It is therefore apparent that the synthesizing enzyme for cyclic ADP-ribose is a very common enzyme.  相似文献   

14.
The cell egg is in a state of quiescence and only after its fusion with the sperm, a series of pre-programmed metabolic processes will be activated, culminating with embryonic development. The egg/sperm fusion induces a transitory increase of Ca(2+) in the cytoplasm, which is responsible for the activation of both precocious and late reactions. The release of Ca(2+) occurs by stimulation of the ionic specific channels. In addition to IP(3), a new Ca-release inducer was recently evidenced, cyclic ADP ribose (cADPR), in some invertebrates and mammals. Here, we report the first evidence of the cADPR presence in fish. Our data also demonstrate that in the sea bream egg, cADPR is involved in the fertilization process; in fact, its level increases after the entrance of the sperm. By in vitro experiments, it was shown that cADPR induces a release of Ca(2+) in the egg homogenate, indicating that in sea bream, the increase of cADPR can induce an intracellular Ca(2+) release. Since cADPR is a product of NAD(+) metabolism, the activity of several enzymes involved in the NAD(+) metabolism was investigated. Sea bream eggs are pelagic and only floating eggs after insemination develop into viable embryos. In the present work, NAD(+) metabolism was studied in both types of egg. All the tested enzymes showed similar specific activity in both floating and sinking eggs. In the latter, cADPR was not detectable and the nucleotides content was significantly lower, evidencing a scarce energetic charge in sinking eggs.  相似文献   

15.
The aminoguanide, methylglyoxal bis(guanylhydrazone) (MGBG), was shown to stimulate phosphorylation of RR-SRC, a synthetic protein tyrosine kinase (PTK) substrate, and different levels of tyrosyl phosphorylation of endogenous proteins in a sea urchin egg membrane-cortex preparation. Stimulating protein tyrosine kinase activity in the sea urchin egg stimulated intracellular Ca2+ release, because microinjection of 1-5 mM of MGBG into unfertilized eggs triggered a transient rise in intracellular Ca2+ activity ([Ca2+]i) after a brief latent period. Pretreating eggs with PTK-specific inhibitors, genistein or tyrphostin B42, significantly inhibited the MGBG-induced rise in [Ca2+]i. Methylglyoxal bis(guanylhydrazone) stimulation of PTK activities in the unfertilized sea urchin egg appeared to trigger Ca2+ release through phospholipase C (PLC)-dependent inositol 1,4,5-trisphosphate (InsP3) production. The MGBG-induced Ca2+ response could be suppressed in eggs preloaded with the InsP3 receptor antagonist, heparin, and was reduced in eggs pretreated with U73122, a PLC inhibitor. However, the response was unchanged in eggs treated with nicotinamide, an inhibitor of ADP-ribosyl cyclase, or nifedipine, an inhibitor of nicotinic acid adenine dinucleotide phosphate activity. These results suggest that MGBG may be useful as a chemical agonist of PTK in sea urchin eggs and allow direct testing of the PTK requirement for the transient rise in [Ca2+]i in sea urchin eggs during fertilization. Although genistein was observed to significantly delay the onset, the sperm-induced Ca2+ response in PTK inhibitor-loaded eggs otherwise appeared normal. Therefore, it was concluded that sea urchin eggs contain a PTK-dependent pathway that can mediate intracellular Ca2+ release, but PTK activity does not appear to be required for the fertilization response.  相似文献   

16.
Ryanodine receptor (RyR) activation by cyclic ADP-ribose (cADPR) is followed by homologous desensitization. Though poorly understood, this "switching off" process has provided a key experimental tool for determining the pathway through which cADPR mediates Ca(2+) release. Moreover, desensitization is likely to play an important role in shaping the complexities of Ca(2+) signaling involving cADPR, for example, localized release events and propagated waves. Using the sea urchin egg, we unmask a role of calmodulin, a component of the RyR complex and a key cofactor for cADPR activity, during RyR/cADPR desensitization. Recovery from desensitization in calmodulin-depleted purified endoplasmic reticulum (microsomes) is severely impaired compared to that in crude egg homogenates. An active, soluble factor, identified as calmodulin, is required to restore the capacity of microsomes to recover from desensitization. Calmodulin mediates recovery in a manner that tightly parallels its time course of association with the RyR. Conversely, direct measurement of calmodulin binding to microsomes reveals a loss of specific binding during cADPR, but not IP(3), desensitization. Our results support a mechanism in which cycles of calmodulin dissociation and reassociation to an endoplasmic reticulum protein, most likely the RyR itself, mediate RyR/cADPR desensitization and resensitization, respectively.  相似文献   

17.
In sea urchin eggs, Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) potently self-inactivates but paradoxically induces long-term Ca2+ oscillations. We investigated whether NAADP-induced Ca2+ oscillations arise from the recruitment of other Ca2+ release pathways. NAADP, inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) all mobilized Ca2+ from internal stores but only NAADP consistently induced Ca2+ oscillations. NAADP-induced Ca2+ oscillations were partially inhibited by heparin or 8-amino-cADPR alone, but eliminated by the presence of both, indicating a requirement for both IP3- and cADPR-dependent Ca2+ release. Thapsigargin completely blocked IP3 and cADPR responses as well as NAADP-induced Ca2+ oscillations, but only reduced the NAADP-mediated Ca2+ transient. Following NAADP-mediated release from this Ca2+ pool, the amount of Ca2+ in the Ca2+-induced Ca2+ release stores was increased. These results support a mechanism in which Ca2+ oscillations are initiated by Ca2+ release from NAADP-sensitive Ca2+ stores (pool 1) and perpetuated through cycles of Ca2+ uptake into and release from Ca2+-induced Ca2+ release stores (pool 2). These results provide the first direct evidence in support of a two-pool model for Ca2+ oscillations.  相似文献   

18.
This study presents evidence that inositol trisphosphate (IP3) releases Ca2+ from intracellular stores in sea urchin eggs. First, high voltage discharge was used to transiently permeabilize eggs and introduce IP3; the resultant induction of cortical reactions (a well characterized Ca2+-dependent event) provided indirect evidence that IP3 released Ca2+ from intracellular stores. Next, Ca2+ uptake and release from egg homogenates and homogenate fractions were monitored by both Ca2+ minielectrodes and the fluorescent Ca2+ indicator, quin-2. Both assay methods showed Ca2+ release upon IP3 addition, with a half-maximal response at 50-60 nM IP3 and maximal Ca2+ release at approximately 1 microM IP3. Homogenates were 300-fold more sensitive to IP3 than IP2, and Ca2+ release was 95% inhibited by the Ca2+ antagonist TMB-8 (3 mM). Fractionation by density gradient centrifugation showed that activities for Ca2+ sequestration and IP3 responsiveness co-purified with endoplasmic reticulum microsomes. Following an initial IP3 addition, homogenates were refractory (desensitized) to additional IP3. However, if homogenates were centrifuged and the vesicles resuspended in media lacking IP3, they would respond to added IP3, therefore, showing that desensitization is most likely due to the presence of IP3. This study also shows that the mechanism of IP3 action is inherent to the microsomes and ions present in the medium used, with no cytoplasmic factors being required. The stability of this microsome preparation and the purification obtained with density gradient centrifugation make this a promising system with which to further characterize the mechanism of IP3 action.  相似文献   

19.
Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from NADP+, has been shown to trigger Ca2+ release from intracellular stores in invertebrate eggs [3] [4] [5] [6] and pancreatic acinar cells [7]. The nature of NAADP-induced Ca2+ release is unknown but it is clearly distinct from the IP3- and cyclic ADP ribose (cADPR)-sensitive mechanisms in eggs (reviewed in [8] [9]). Furthermore, mammalian cells can synthesize and degrade NAADP, suggesting that NAADP-induced Ca2+ release may be widespread and thus contribute to the complexity of Ca2+ signalling [10] [11]. Here, we show for the first time that NAADP evokes Ca2+ release from rat brain microsomes by a mechanism that is distinct from those sensitive to IP3 or cADPR, and has a remarkably similar pharmacology to the action of NAADP in sea urchin eggs [12]. Membranes prepared from the same rat brain tissues are able to support the synthesis and degradation of NAADP. We therefore suggest that NAADP-mediated Ca2+ signalling could play an important role in neuronal Ca2+ signalling.  相似文献   

20.
Cyclic ADP-ribose (cADPR) was discovered as a potent Ca2+-mobilising natural compound in sea urchin eggs. Recently, cADPR was reported to stimulate Ca2+ signalling in several higher eukaryotic cell systems (e.g., smooth and cardiac muscle cells, neuronal cells, adrenal chromaffin cells, macrophages, pancreatic acinar cells and T-lymphocytes). The following aspects of the role of cADPR as a Ca2+-mobilising second messenger are reviewed: coupling of metabolism of cADPR to stimulation of receptors in the plasma membrane, properties and pharmacology of Ca2+ release by cADPR and the involvement of cADPR in Ca2+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号