首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

3.
4.
5.
6.
7.
Selective inhibition of hepatitis B virus replication by RNA interference   总被引:43,自引:0,他引:43  
Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells including genes of viral origin. To evaluate the therapeutic efficacy of siRNA against the hepatitis B virus (HBV), we studied the effect of transfection of the HBV-inducible cell lines HepAD38 and HepAD79 with siRNA specific for the core gene of the HBV genome. HepAD38 cells produce wild-type HBV, whereas HepAD79 cells produce the lamivudine resistant YMDD variant. Transfection of HepAD38 cells with either 1.6 or 4 microg/ml siRNA resulted in a profound inhibition (72% and 98%, respectively) of viral replication (as assessed by real-time quantitative PCR). The inhibitory effect was corroborated by a marked reduction of HBV core protein synthesis in induced HepAD38 cells. In HepAD79 cells, transfected with 1.6 or 4 microg/ml HBV-specific siRNA, virus production was reduced by 75% and 89%, respectively.  相似文献   

8.
9.
Selective inhibition of f2 RNA translation by sulfhydryl reagents   总被引:1,自引:0,他引:1  
Escherichia coli ribosomes containing bound initiation factors were reacted with N-ethylmaleimide (NEM) under conditions where about 20 NEM molecules bind per ribosome. This treatment results in a large reduction in their ability to translate f2 RNA but not late T4 mRNA or polyuridylate. Iodoacetate produces a similar effect. These results indicate that ribosomal factors responsible for mRNA specificity differ appreciably in their sensitivity to inactivation by alkylation and suggest that translational control, dependent on mRNA selectivity, might operate by modifying the same or similar reactive sites.  相似文献   

10.
11.
Multiple homeobox genes are expressed in haematopoietic cell lineages and their expression is cell-type specific. Thus we hypothesized that certain homeobox genes may play an important role in the process of haematopoiesis. To prove that issue, normal murine bone marrow cells were stimulated with appropriate Colony Stimulating Factors in the presence of mouse homeobox gene (Hox 2.3) sense or antisense oligodeoxynucleotides and the effects on the haematopoietic colony formation were examined. Treatment of the cells to Hox 2.3 antisense oligodeoxynucleotides led to a selective inhibition of myeloid colony formation, both in size and in numbers, but without significant effect on erythroid and megakaryocytic haematopoiesis. Exposure to Hox 2.3 sense oligodeoxynucleotides (no-oligomers), had no such effect. It was further showed that inhibition of myelopoiesis by Hox 2.3 antisense oligodeoxynucleotides was dependent on the differentiation stage of target cells. These findings demonstrated that Hox 2.3 gene plays a critical role in regulating normal murine myelopoiesis.  相似文献   

12.
Under partial inhibition of total RNA synthesis by rifampicin the formation of beta- and beta'-subunits of RNA polymerase is stimulated and the rRNA synthesis is selectively repressed. The differential rate of synthesis of the beta- and beta'-subunits increases from 1,15% up to 2,88% in the presence of 30 micrograms rifampicin per ml. Simultaneously the differential rate of rRNA synthesis decreases from 41% down to 10%. The degree of inhibition of rRNA synthesis by rifampicin depends on the cell growth rate.  相似文献   

13.
14.
We tested the impact of antisense RNA and DNA molecules on SV40 gene expression by microinjection into TC7 cells. Short antisense stretches, complementary to either hairpin or loop structures on the T antigen mRNA, inhibited T antigen synthesis. In contrast, full-length antisense RNA and DNA molecules did not effect T antigen synthesis.  相似文献   

15.
16.
Regulation of plant gene expression by antisense RNA.   总被引:17,自引:0,他引:17  
Regulation of gene expression by antisense RNA was first discovered as a naturally-occurring phenomenon in bacteria. Recently natural antisense RNAs have been found in a variety of eukaryotic organisms; their in vivo function is, however, obscure. Deliberate expression of antisense RNA in animal and plant systems has lead to successful down-regulation of specific genes. We will review the current status of antisense gene action in plant systems. The recent discovery that 'sense' genes are able to mimic the action of antisense genes indicates that (anti)sense genes must operate by mechanisms other than RNA-RNA interaction.  相似文献   

17.
18.
The expression of the enzyme UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) from potato (Solanum tuberosum L.) was analysed with respect to sink-source interactions and potato tuber storage. The highest level of expression was found in developing tubers, the strongest sink tissue. Storage of mature tubers at low temperatures led to an increase of the steady-state level of UGPase mRNA, implicating a role of this enzyme in the process of cold-sweetening. Transgenic plants were created expressing UGPase antisensee RNA under the control of the 35S promoter of the Cauliflower Mosaic Virus with the polyadenylation signal of the octopine-synthase gene. Regenerated plants were tested for reduction of UGPase at the RNA, protein and activity levels. Plants with a 95%–96% reduction of UGPase activity in growing tubers showed no change in growth and development. Also, carbohydrate metabolism in tubers of these plants was not substantially affected, indicating that only 4% of the wild-type UGPase activity is sufficient for the enzyme to function in plant growth and development.Abbreviations cDNA copy DNA - CaMV Cauliflower Mosaic Virus - Glc1P glucose-1-phosphate - UDPGlc UDP-glucose - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - UGPase UDP-glucose pyrophosphorylase We are grateful to Dr. J.P. Spychalla (Cambridge Laboratory, Norwich, Norfolk, UK) for providing antiserum directed against the potato tuber UGPase protein. We thank J. Bergstein and B. Schäfer for photographic work, J. Dietze for plant transformation and R. Breitfeld and B. Burose for taking care of the greenhouse plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号