首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

2.
The bone morphogenetic proteins (BMPs) play a pivotal role in endochondral bone formation. Using differential display polymerase chain reaction, we have identified a novel gene, named BIG-3 (BMP-2-induced gene 3 kb), that is induced as a murine prechondroblastic cell line, MLB13MYC clone 17, acquires osteoblastic features in response to BMP-2 treatment. The 3-kilobase mRNA encodes a 34-kDa protein containing seven WD-40 repeats. Northern and Western analyses demonstrated that BIG-3 mRNA and protein were induced after 24 h of BMP-2 treatment. BIG-3 mRNA was expressed in conditionally immortalized murine bone marrow stromal cells, osteoblasts, osteocytes, and growth plate chondrocytes, as well as in primary calvarial osteoblasts. Immunohistochemistry demonstrated that BIG-3 was expressed in the osteoblasts of calvariae isolated from mouse embryos. To identify a role for BIG-3 in osteoblast differentiation, MC3T3-E1 cells were stably transfected with the full-length coding region of BIG-3 (MC3T3E1-BIG-3) cloned downstream of a cytomegalovirus promoter in pcDNA3.1. Pooled MC3T3E1-BIG-3 clones expressed alkaline phosphatase activity earlier and achieved a peak level of activity 10-fold higher than cells transfected with the empty vector (MC3T3E1-EV) at 14 days. Cyclic AMP production in response to parathyroid hormone was increased 10- and 14-fold at 7 and 14 days, respectively, in MC3T3E1-BIG-3 clones, relative to MC3T3E1-EV clones. This increase in cAMP production was associated with an increase in PTH binding. Expression of BIG-3 increased mRNA levels encoding Cbfa1, type I collagen, and osteocalcin and accelerated formation of mineralized nodules. In conclusion, we have identified a novel WD-40 protein, induced by BMP-2 treatment, that dramatically accelerates the program of osteoblastic differentiation in stably transfected MC3T3E1 cells.  相似文献   

3.
4.
Although a small number of estrogen receptors (ER) were visualized in osteoblastic cells, and estradiol (E2) has some effects on osteoblasts in vitro, the direct action of E2 on osteoblasts has not been fully established. To determine the presence of functional ER in osteoblasts, we transfected cells with a plasmid containing the chloramphenicol acetyl transferase (CAT) reporter gene and the estrogen-responsive element (ERE) from the vitellogenin A2 gene. E2-dependent induction of CAT activity was determined 48 h after transient transfection and subsequent treatment with 10-100 nM 17 beta-E2. 17 beta-E2, but not 17 alpha-E2, dihydrotestosterone, or progesterone, induced CAT activity in a dose-dependent manner (up to 6-fold) in rat calvarial fraction-3, RCT-3, PyMS, and UMR-106 cells as well as in the human osteosarcoma cell line SaOS-2/B-10. In contrast, E2 had no effect on the induction of CAT activity in the preosteoblastic cell lines RCT-1 and TRAB-11, in the rat osteosarcoma cell line ROS 17/2.8, and in the fibroblastic cell lines BALB-c/3T3 and NRK. Over-expression of ER using a simian virus-40-based expression vector not only conferred or enhanced E2-dependent induction of CAT in all cell types, but augmented E2-dependent expression of insulin-like growth factor-I and E2-stimulated DNA synthesis in primary calvarial and PyMS osteoblastic cells, respectively. These data show the presence of low levels of functional endogenous ER in some, but not all, osteoblastic cells and suggest that the abundance of ER may be rate limiting in the action of E2 on these cells.  相似文献   

5.
6.
7.
8.
Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.  相似文献   

9.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. In the present study, the effect of apocynin on the function of osteoblastic MC3T3-E1 cells was studied. Apocynin caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P < 0.05). Antimycin A (AMA), which inhibits complex III of the electron transport system, has been used as a reactive oxygen species (ROS) generator in biological systems. We exposed cultured osteoblastic MC3T3-E1 cells to AMA with or without pretreatment with apocynin. Apocynin significantly (P < 0.05) increased cell survival, calcium deposition, and osteoprotegerin release and decreased the production of ROS and osteoclast differentiation inducing factors such as TNF-α, IL-6, and receptor activator of nuclear factor-kB ligand (RANKL) in the presence of AMA. These results demonstrate that apocynin can protect osteoblasts from mitochondrial dysfunction-induced toxicity and may have positive effects on skeletal structure.  相似文献   

10.
Growth and differentiation factor 7(GDF7), also later called as bone morphogenetic protein (BMP)12, is a new member of the BMP superfamily, which induces formation of tendon-like tissue formation in the ectopic implantation experiments. We examined the effect of BMP12 on proliferation and expression of phenotype-related genes in rat osteoblastic osteosarcoma ROS17/2.8 cells. BMP12 treatment enhanced proliferation of ROS17/2.8 cells within 3 days and this effect was observed at least up to day 6 of the treatment. The cell number was increased by about 50% on day 3 and about two-fold by day 6. These effects were observed at the dose range between 40 and 1,000 ng/ml. Treatment with BMP12 also enhanced alkaline phosphatase activity by about 50% in ROS17/2.8 cells within 24 h of the treatment. The effect peaked at 48 h and was still observed at 72 h. The enhancing effect of BMP12 on alkaline phosphatase was observed similarly at the doses ranging from 40 to 1,000 ng/ml. These data indicate that BMP12 has positive effects on proliferation and phenotypic expression of ROS 17/2.8 cells.  相似文献   

11.
12.
13.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
《Phytomedicine》2014,21(10):1170-1177
PurposeMethylglyoxal (MG) has been suggested to be one major source of intracellular reactive carbonyl compounds. In the present study, the effect of paeoniflorin on MG-induced cytotoxicity was investigated using osteoblastic MC3T3-E1 cells.MethodsOsteoblastic MC3T3-E1 cells were pre-incubated with paeoniflorin before treatment with MG, and markers of oxidative damage and mitochondrial function were examined.ResultsPretreatment of MC3T3-E1 cells with paeoniflorin prevented the MG-induced cell death and formation of intracellular reactive oxygen species, cardiolipin peroxidation, and protein adduct in osteoblastic MC3T3-E1 cells. In addition, paeoniflorin increased glutathione level and restored the activity of glyoxalase I to almost the control level. These findings suggest that paeoniflorin provide a protective action against MG-induced cell damage by reducing oxidative stress and by increasing MG detoxification system. Pretreatment with paeoniflorin prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss. Additionally, the nitric oxide and nuclear respiratory factor 1 levels were significantly increased by paeoniflorin, suggesting that paeoniflorin may induce mitochondrial biogenesis. Paeoniflorin treatment decreased the levels of proinflammatory cytokines such as TNF-α and IL-6.ConclusionsThese findings indicate that paeoniflorin might exert its therapeutic effects via upregulation of glyoxalase system and mitochondrial function. Taken together, paeoniflorin may prove to be an effective treatment for diabeteic osteopathy.  相似文献   

15.
BMPs play an important role in both intramembranous and endochondral ossification. BIG-3, BMP-2-induced gene 3 kb, encodes a WD-40 repeat protein that accelerates the program of osteoblastic differentiation in vitro. To examine the potential interactions between BIG-3 and the BMP-2 pathway during osteoblastic differentiation, MC3T3-E1 cells stably transfected with BIG-3 (MC3T3E1-BIG-3), or with the empty vector (MC3T3E1-EV), were treated with noggin. Noggin treatment of pooled MC3T3E1-EV clones inhibited the differentiation-dependent increase in AP activity observed in the untreated MC3T3E1-EV clones but did not affect the increase in AP activity in the MC3T3E1-BIG-3 clones. Noggin treatment decreased the expression of Runx2 and type I collagen mRNAs and impaired mineralized matrix formation in MC3T3E1-EV clones but not in MC3T3E1-BIG-3 clones. To determine whether the actions of BIG-3 on osteoblast differentiation converged upon the BMP pathway or involved an alternate signaling pathway, Smad1 phosphorylation was examined. Basal phosphorylation of Smad1 was not altered in the MC3T3E1-BIG-3 clones. However, these clones did not exhibit the noggin-dependent decrease in phosphoSmad1 observed in the MC3T3E1-EV clones, nor did it decrease nuclear localization of phosphoSmad1. These observations suggest that BIG-3 accelerates osteoblast differentiation in MC3T3-E1 cells by inducing phosphorylation and nuclear translocation of Smad1 independently of endogenously produced BMPs.  相似文献   

16.
Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.  相似文献   

17.
18.
In an osteoblastic cell line, MC3T3-E1, cloned from mouse calvaria, epinephrine stimulated the production of prostaglandin E2 as an essentially sole arachidonate metabolite (Kusaka, M., Oshima, T., Yokota, K., Yamamoto, S., and Kumegawa, M. (1988) Biochim. Biophys. Acta. 972, 339-346). Western and Northern blot analyses showed increases in the enzyme protein and mRNA of fatty acid cyclooxygenase in the epinephrine-treated cells. A rapid cAMP production caused by epinephrine was followed by increases in the activity and mRNA of cyclooxygenase. Both dibutyryl cAMP and 8-bromo-cAMP also increased the level of the cyclooxygenase activity and mRNA. These results suggest that cAMP produced by beta-adrenergic stimulation was responsible for the increased cyclooxygenase mRNA level leading to induction of the cyclooxygenase enzyme. Furthermore, the addition of prostaglandin E2 (the final arachidonate metabolite in the MC3T3-E1 cells) brought about a rapid synthesis of intracellular cAMP followed by increases in the enzyme protein and mRNA of cyclooxygenase.  相似文献   

19.
We investigated the stimulative effect of prostaglandin E2 (PGE2) on an osteoblastic cell line, clone MC3T3-E1, in serum-free medium. PGE2 elevated collagen and non-collagen protein syntheses in a dose-related fashion up to 2 micrograms/ml, the maximal increases being 2- and 3-fold, respectively, over that in the control. Its stimulative effect was evident as early as 12 h. PGE2 slightly increased DNA content, but its effect was less than that on collagen and non-collagen protein syntheses. Moreover, PGE stimulated an increase in prolyl hydroxylase activity with a maximal effect at 1-2 micrograms/ml, the activity being 15-fold over that of the control. These results strongly indicate that PGE2 directly enhances total protein synthesis including that of collagen in osteoblasts in vitro, suggesting its direct effect on bone formation in vivo as well.  相似文献   

20.
A human osteosarcoma cell line, HOS TE85 cells, and a mouse osteoblastic cell line, MC3T3-E1 cells, were cultured for 3 days in a medium containing various concentrations of menaquinone-4 (vitamin K2). As a result, the proliferation of HOS cells was suppressed by vitamin K2 in a dose dependent manner up to 56% of control by 10(-7)M of vitamin K2 and that of MC3T3-E1 cells was suppressed to 84% of control by 10(-6)M of vitamin K2. Vitamin K2 increased alkaline phosphatase activity in both kinds of cells. Warfarin counteracted the effect of vitamin K2 on osteoblastic cell proliferation. Our results show that vitamin K2 modulates proliferation and function of osteoblastic cells by some mechanisms including gamma-carboxylation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号