首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The uncE114 mutation from Escherichia coli strain KI1 (Nieuwenhuis, F. J. R. M., Kanner, B. I., Gutnick, D. L., Postma, P. W., and Van Dam, K. (1973) Biochim. Biophys. Acta 325, 62-71) was characterized after transfer to a new genetic background. A defective H+-ATPase complex is formed in strains carrying the mutation. Based upon the genetic complementation pattern of other unc mutants by a lambda uncE114 transducing phage, and complementation of uncE114 recipients by an uncE+ plasmid (pCP35), the mutation was concluded to lie in the uncE gene. The uncE gene codes for the omega subunit ("dicyclohexylcarbodiimide binding protein") of the H+-ATPase complex. The mutation was defined by sequencing the mutant gene. The G----C transversion found results in a substitution of Glu for Gln at position 42 of the omega subunit in the Fo sector of the H+-ATPase. The substitution did not significantly impair H+ translocation by Fo or affect inhibition of H+ translocation by dicyclohexylcarbodiimide. Wild-type F1 was bound by uncE114 Fo with near normal affinity, but the functional coupling between F1 and Fo was disrupted. The uncoupling was indicated by an H+-leaky membrane, even when saturating levels of wild-type F1 were bound. Disassociation of F1 from Fo under conditions of assay did partially contribute to the H+ leakiness, but the major contributor to the high H+ conductance was Fo with bound F1. The F1 bound to uncE114 membranes exhibited normal ATPase activity, but ATP hydrolysis was uncoupled from H+ translocation and was resistant to inhibition by dicyclohexylcarbodiimide. The F1 isolated from the uncE114 mutant was modified with partial loss of coupling function. However, this modification did not account for the uncoupled properties of the mutant Fo described above, since these properties were retained after reconstitution of mutant membrane (Fo) with wild-type F1.  相似文献   

2.
Dicyclohexylcarbodiimide (DCCD) inhibits the activity of the F1F0-H+ ATP synthase of Escherichia coli by reacting with aspartyl 61 in subunit c of the FO sector to form a stable N-acylurea. The segment of chromosomal DNA which codes the subunits of the FO was cloned from four independently isolated DCCD-resistant mutants, and the sequence of the subunit c gene (uncE) was determined. An Ala24 to serine (A24S) substitution was found in the subunit c gene of each mutant. The A24S uncE gene was cloned into the BamHI site of a mutant derivative of plasmid pBR322. The A24S subunit c conferred DCCD resistance to a variety of recipient E. coli strains when it was overexpressed from this plasmid. A 7-base pair deletion beginning at position 132 of the plasmid vector was responsible for the observed overexpression. Hoppe et al. (Hoppe, J., Schairer, H. U., and Sebald, W. (1980) Eur. J. Biochem. 112, 17-24) had previously shown that mutation of subunit c Ile28 to threonine or valine resulted in DCCD resistance. The DCCD sensitivities of the membrane ATPase of these mutants and the A24S mutant were compared. DCCD sensitivity decreased in the order: wild-type much greater than I27V greater than I28T = A24S. The venturicidin sensitivities of wild-type and mutant membranes were also examined. The membrane ATPase of the I28T and I28V mutants was venturicidin resistant whereas the A24S substitution resulted in a hypersensitivity to inhibition by venturicidin. These results support a model in which subunit c folds in the membrane like a hairpin, where the region of residues 24-28 in transmembrane helix-1 is close to that of aspartyl 61 in transmembrane helix-2.  相似文献   

3.
The uncE114 mutation (Gln42----Glu) in subunit c of the Escherichia coli H+ ATP synthetase causes uncoupling of proton translocation from ATP hydrolysis (Mosher, M. E., White, L. K., Hermolin, J., and Fillingame, R. H. (1985) J. Biol. Chem. 260, 4807-4814). In the background of strain ER, the mutation led to dissociation of F1 from the membrane. Ten revertants to the uncE114 mutation were isolated, and the uncE gene was cloned and sequenced. Six of the revertants were intragenic and had substitutions of glycine, alanine, or valine for the mutant glutamate residue at position 42. The intragenic, revertant uncE genes were incorporated into an otherwise wild type chromosome of strain ER. Membrane vesicles prepared from each of the revertants showed a restoration of F1 binding to F0. The Val42 revertant differed from the other two revertants in that the ATPase activity of F1 was inhibited when membrane bound. This was shown by the stimulation of ATPase activity when F1 was released from the membrane. The Gly42 and Ala42 revertants demonstrated membrane ATPase activity that was resistant to dicyclohexylcarbodiimide treatment. Resistance was shown to be due to the increased dissociation of F1 from the membrane under ATPase assay conditions. The Ala42 revertant showed a significant reduction in ATP-dependent quenching of quinacrine fluorescence that was attributed to less efficient coupling of ATP hydrolysis to H+ translocation, whereas the other revertants showed responses very near to that of wild type. Minor changes in the F1-F0 interaction in all three revertants were indicated by an increase in H+ leakiness, as judged by reduced NADH-dependent quenching of quinacrine fluorescence. The minor defects in the revertants support the idea that residue 42 is involved in the binding and coupling of F1 to F0 but also show that the conserved glutamine (or asparagine) is not absolutely necessary in this function.  相似文献   

4.
Plasmid pRPG54, which carries the genes for the eight subunits of the proton-translocating ATPase of Escherichia coli, has been found to carry a single base change of a G to an A in the ribosome-binding site for uncE, the gene which codes for the N,N'-dicyclohexylcarbodiimide-binding subunit c of the Fo. This noncoding region mutation both lowers expression of uncE by a factor of 2-3 and affects the function of the ATPase, specifically of the Fo sector. The presence of the mutation results in a decrease in the proton permeability of the Fo or of the entire F1Fo-ATPase complex when either is synthesized from genes on a multicopy plasmid. Expression of uncE from an F1Fo plasmid carrying the wild type ribosome binding site results in increased membrane proton permeability and decreased ability of the resultant ATPase to couple a transmembrane proton gradient to ATP synthesis both in vitro and in vivo. Also, although an Fo plasmid carrying the correct ribosome-binding site causes harmful, F1-dependent proton permeability in unc+ cells (Brusilow, W. S. S. (1987) J. Bacteriol. 169, 4984-4990), an identical plasmid carrying the mutation does not, even though it still codes for a functional reconstitutable Fo. The results show a relationship between the relative level of expression of uncE from a multicopy plasmid and the assembly pathway, proton permeability, and energy-coupling characteristics of the ATPase.  相似文献   

5.
A site-directed mutation in the gene which codes for the c-subunit of the F1F0-ATPase, resulting in the substitution of Ala-25 by Tyr, has been constructed and characterized. A plasmid carrying the mutation was used to transform strain AN943 (uncE429). The resulting strain is unable to grow on succinate as sole carbon source and possesses an uncoupled growth yield. Membranes prepared from the mutant possess low levels of ATPase activity and are proton-impermeable. The F1-ATPase activity was found to be inhibited by 80% when bound to the membrane. When carried on a plasmid, the mutation is dominant in complementation tests with all mutant unc alleles tested and when transformed into wild-type strain AN346, the mutation results in an uncoupled phenotype. A mutant which overcomes this dominance was isolated and found to possess an 11-amino-acid deletion extending from Ile-55 to Met-65 within the c-subunit. These results are discussed in relation to the previously isolated Ala-25 to Thr mutant (Fimmel, A.L., Jans, D.A., Hatch, L., James, L.B., Gibson, F. and Cox, G.B. (1985) Biochim. Biophys. Acta 808, 252-258) and in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62-69).  相似文献   

6.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

7.
The effect on the function of the Escherichia coli F1F0-ATPase of the substitution of leucine-31 by phenylalanine in the c-subunit of the enzyme was examined. The assembly of the mutant c-subunit requires an increased gene dosage [Jans, Fimmel, Langman, James, Downie, Senior, Ash, Gibson & Cox (1983) Biochem. J. 211, 717-726], and this was achieved by incorporation of the uncE408 or uncE463 alleles on to F-plasmids or multicopy plasmids. Membranes from strains carrying either the uncE463 or uncE408 alleles on F-plasmids or multicopy plasmids were capable of carrying out oxidative phosphorylation. In particular, membranes from strain AN1928 (pAN162, uncE463) gave phosphorylation rates and P/O ratios equal to or greater than those obtained for the control strain AN1460 (pAN45, unc+). However, the mutant membranes, on removal of the F1-ATPase, appeared to be proton-impermeable. The ATPase activity of the mutant membranes was also resistant to the inhibitor dicyclohexylcarbodi-imide.  相似文献   

8.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

9.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

10.
The ATP-hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X-100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1 F0 type. The ATPase was specifically activated by Na+ ions yielding a 15-fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X-100 caused a further 1.5-fold activation. In the absence of Na+ Triton stimulated the ATPase about 13-fold. The Triton-stimulated ATPase was further activated about 1.5-2-fold by Na+ addition. The ATPase extracted by the low-ionic-strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1-ATPase subunit structure with Mr values of 58,000 (alpha), 56,000 (beta), 37,600 (gamma), 22,700 (delta), and 14,000 (epsilon). The F1-ATPase was not stimulated by Na+ ions. The membrane-bound ATPase was reconstituted from the purified F1 part and F1-depleted membranes, thus further indicating an F1 F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane-bound F0 part of the enzyme complex.  相似文献   

11.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   

12.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

13.
A kinetic study of mitochondrial ATPase (F0-F1 complex) from pig heart reported in this paper shows that when it was incubated with free Mg2+ (0-2mM), the hydrolytic activity of the ATPase was competitively activated by the Mg2+ and revealed no cooperativity. In the case of incubation with free ATP the hydrolytic activity was competitively inhibited and revealed positive cooperativity. These results are quite different from those of free F1 as obtained by Gautheron and coworkers (1). This indicates that either Mg2+ or ATP produces different effects on F1 when it is in different states, i.e., free state and membrane bound state. This may be considered to mean that the conformation of F1 in membrane bound state, which is influenced by F0 and membrane lipids is different from that of F1 in free state, thus exhibiting different catalytic site cooperativity between subunits, which is the fundamental feature of the mechanism of the enzyme action.  相似文献   

14.
Integration into the cytoplasmic membrane and function of the three F0 subunits, a, b and c, of the membrane-bound ATP synthase of Escherichia coli K12 were analysed in situations where synthesis of only one or two types of subunits was possible. This was achieved by combined use of atp mutations and plasmids carrying and expressing one or two of the atp genes coding for ATP synthase subunits. AU three F0 subunits were found to be required for the establishment of efficient H+ conduction. Subunits a and b individually as well as together were found to bind F1 ATPase to the membrane while subunit c did not. The ATPase activity bound to either of these single subunits, or in pairwise combinations, was not inhibited by N,N'-dicyclohexylcarbodiimide. Also ATP-dependent H+ translocation was not catalysed unless all three F0 subunits were present in the membrane. The integration into the membrane of the subunits a and b was independent of the presence of other ATP synthase subunits.  相似文献   

15.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

16.
An ATPase complex sensitive to the energy transfer inhibitors oligomycin, dicyclohexylcarbodiimide and venturicidin has been solubilized from Rhodospirillum rubrum chromatophores with Triton X-100 and further purified by centrifugation on a glycerol gradient. The partially purified RrFo . F1 contains 13 distinct polypeptide subunits, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, including the subunits of the oligomycin-sensitive, water-soluble RrF1 ATPase. The ATPase activity of RrF0 . F1 as that of the membrane-bound enzyme complex depends on Ca2+ or Mg2+ and from detailed kinetic studies it is concluded that the divalent cation-ATP complex is the substrate for both ATPase complexes. Free ATP and free Mg2+ act as competitive inhibitors, with Ki values of 1 mM and 7 muM, respectively. The subunit composition of the purified RrFo . F1 and its similarity to the membrane-bound ATPase with respect to cation dependence and sensitivity to energy transfer inhibitors suggests that it contains all the subunits of the R. rubrum coupling factor-ATPase complex.  相似文献   

17.
1. Preincubation of MgATP submitochondrial particles with EDTA or Tris.HCl liberated a measurable amount of ATPase inhibitor that could be rapidly purified using only trichloroacetic acid precipitation and heat treatment. 2. In spite of the emergence of high ATPase activity, a considerable amount of ATPase inhibitor was left in the particles. Comparative analysis of other submitochondrial preparations indicated that only AS-particles were effectively depleted. 3. The high ATPase activity of inhibitor-deficient particles, was labile at low temperature provided that the exposure to cold was done in the presence of MgATP. Other nucleotides could not substitute for ATP. Glycerol inhibited and salts enhanced the cold inactivation of membrane-bound F1-ATPase. Isolation of F1-ATPase from cold-inactivated particles yielded a soluble preparation of correspondingly lower activity. 4. It is concluded that together with the increase of ATPase activity, the ATP-dependent cold lability of membrane-bound F1-ATPase and the dislocation of ATPase inhibitor at non operative sites reveal the extent of ATPase complex disorganization.  相似文献   

18.
A mutant strain of Escherichia coli carrying a mutation in the uncE gene which codes for the c-subunit of the F1F0-ATPase has been isolated and examined. The mutant allele, designated uncE513, results in alanine at position 25 of the c-subunit being replaced by threonine. The mutant F1F0-ATPase appears to be fully assembled and is partially functional with respect to oxidative phosphorylation. The ATPase activity of membranes from the mutant strain is resistant to the inhibitor dicyclohexylcarbodiimide, but this is due to the F1-ATPase being lost from the membranes in the presence of the inhibitor. Mutant membranes from which the F1-ATPase has been removed have a greatly reduced proton permeability compared with similarly treated normal membranes. The results are discussed in relation to a previously proposed mechanism of oxidative phosphorylation.  相似文献   

19.
The Kdp system from Escherichia coli is a derepressible high-affinity K+-uptake ATPase. Its membrane-bound ATPase activity was approximately 50 mumol g-1 min-1. The Kdp-ATPase complex was purified from everted vesicles by solubilization with the nonionic detergent Aminoxid WS 35 followed by DEAE-Sepharose CL-6B chromatography at pH 7.5 and pH 6.4 and gel filtration on Fractogel TSK HW-65. The overall yield of activity was 6.5% and the purity at least 90%. The isolated KdpABC complex had a high affinity for its substrates K+ (Km app. = 10 microM) and Mg2+-ATP (Km = 80 microM) and a narrow substrate specificity. The ATPase activity was inhibited by vanadate (Ki = 1.5 microM), fluorescein isothiocyanate (Ki = 3.5 microM), N,N'-dicyclohexylcarbodiimide (Ki = 60 microM) and N-ethylmaleimide (Ki = 0.1 mM). The purification protocol was likewise applicable to the isolation of a KdpA mutant ATPase which in contrast to the wild-type enzyme exhibited an increased Km value for K+ of 6 mM and a 10-fold lowered sensitivity for vanadate. Starting from the purified Kdp complex the single subunits were obtained by gel filtration on Bio-Gel P-100 in the presence of SDS. Both the native Kdp-ATPase and the SDS-denatured polypeptides were used to raise polyclonal antibodies. The specificity of the antisera was established by immunoblot analysis. In functional inhibition studies the anti-KdpABC and anti-KdpB sera impaired ATPase activity in the membrane-bound as well as in the purified state of the enzyme. In contrast, the anti-KdpC serum did not inhibit enzyme activity.  相似文献   

20.
1. The effect of energy transfer inhibitors on energy-dependent exchange of tightly bound adenine nucleotides with washed, broken spinach thylakoids has been studied. Energy transfer inhibitors that inhibit the ATPase activity of soluble chloroplast coupling factor 1 (CF1) (e.g. phloridzin and tentoxin) do not inhibit energy-dependent adenine nucleotide exchange. Energy transfer inhibitors that block proton flux through the hydrophobic protein proton channel (CF0) (e.g. dicyclohexylcarbodiimide and triphenyltin chloride) also block light-dependent adenine nucleotide exchange. 2. Tentoxin, at relatively high concentrations, stimulates an energy-independent exchange of adenosine diphosphate. 3. High concentrations of tentoxin elicit a Ca2+-dependent ATPase activity with soluble CF1, but has no effect on the Ca2+-dependent ATPase activity of membrane-bound CF1. 4. The trypsin-activated, Ca2+-dependent, membrane-bound ATPase is not affected by high concentrations of tentoxin, whereas the dithiothreitol-activated, Mg2+-dependent ATPase is markedly inhibited. 5. The reconstitution of chloroplasts, partially depleted in CF1, with soluble CF1 is correlated with the loss of tentoxin-induced, Ca2+-dependent ATPase activity associated with soluble CF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号