首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Previous mutagenesis studies along with molecular modeling using the x-ray coordinates of the rabbit 15-lipoxygenase have led to the suggestion that the size of the substrate binding pocket may play an essential role in determining the oxygenation specificity of 5-, 12-, and 15-lipoxygenases. Based on the x-ray crystal structure of rabbit 15-lipoxygenase, Ile(593) appeared to be important in defining size and shape of the substrate-binding site in 15-lipoxygenases. We found that substitution of Ile(593) with alanine shifted the positional specificity of this enzyme toward 12-lipoxygenation. To compare the importance of position 593 with previously defined determinants for the oxygenation specificity, we introduced small (alanine-scan) or large amino acids (phenylalanine-scan) at critical positions surrounding the putative fatty acid-binding site, so that the volume of the pocket was either increased or decreased. Enlargement or alteration in packing density within the substrate binding pocket in the rabbit 15-lipoxygenase increased the share of 12-lipoxygenase products, whereas a smaller active site favored 15-lipoxygenation. Simultaneous substitution of both large and small residues in the context of either a 15- or 12-lipoxygenase indicated that there is a functional interplay of the sequence determinants for lipoxygenation specificity. If the 15-lipoxygenase active site is enlarged excessively, however, no lipoxygenation was observed anymore. Together these results indicate the importance of the overall size and shape of the arachidonic acid binding pocket in defining the specificity of lipoxygenase reaction.  相似文献   

2.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

3.
Tang S  Xiao V  Wei L  Whiteside CI  Kotra LP 《Proteins》2008,72(1):447-460
Protein kinase C (PKC) isozymes are an important class of enzymes in cell signaling and as drug targets. They are involved in specific pathways and have selectivity towards certain ligands, despite their high sequence similarities. Ruboxistaurin is a specific inhibitor of PKC-beta. To understand the molecular determinants for the selectivity of ruboxistaurin, we derived the three-dimensional structures of the kinase domains of PKC-alpha, -betaI, and -zeta using homology modeling. Several binding orientations of ruboxistaurin in the binding sites of these PKC catalytic domains were analyzed, and a putative alternative binding site for PKC-zeta was identified in its kinase domain. The calculated free energy of binding correlates well with the IC(50) of the inhibitor against each PKC isozyme. A residue-based energy decomposition analysis attributed the binding free energy to several key residues in the catalytic sites of these enzymes, revealing potential protein-ligand interactions responsible for ligand binding. The contiguous binding site revealed in the catalytic domain of PKC-zeta provides avenues for selective drug design. The details of structural nuances for specific inhibition of PKC isozymes are presented in the context of the three-dimensional structures of this important class of enzymes.  相似文献   

4.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.  相似文献   

5.
The structure of a complex between the catalytic subunit of Zea mays CK2 and the nucleotide binding site-directed inhibitor emodin (3-methyl-1,6,8-trihydroxyanthraquinone) was solved at 2.6-A resolution. Emodin enters the nucleotide binding site of the enzyme, filling a hydrophobic pocket between the N-terminal and the C-terminal lobes, in the proximity of the site occupied by the base rings of the natural co-substrates. The interactions between the inhibitor and CK2 alpha are mainly hydrophobic. Although the C-terminal domain of the enzyme is essentially identical to the ATP-bound form, the beta-sheet in the N-terminal domain is altered by the presence of emodin. The structural data presented here highlight the flexibility of the kinase domain structure and provide information for the design of selective ATP competitive inhibitors of protein kinase CK2.  相似文献   

6.
We have modeled betacellulin (BTC) to gain insight into the structural elements that can explain its properties. The epidermal growth factor (EGF) signal transduction pathway, a significant mediator of several cell functions, is based on four closely related tyrosine kinase receptors. The ErbB receptors are transmembrane glycoproteins and signal transduction is initiated by ligand binding that induces receptor homo- or heterodimerization to form a complex containing two molecules of ligand and two molecules of receptor. The EGF family of ligands can be divided into three groups based on their ability to bind and activate distinct ErbB receptor homo- and heterodimers. Each member of the group formed by BTC, heparin binding EGF (HB-EGF) and epiregulin (EP) can interact with both the EGF receptor (EGFR) and heregulin receptors (ErbB-3 and ErbB-4), and are hence called bispecific ligands. BTC and EP also present the distinctive feature that they activate all possible heterodimeric ErbB receptors. BTC has been modeled with the program MODELLER, using human EGF, human transforming growth factor alpha (hTGF), human HB-EGF and human heregulin one alpha (hHRG-1) as templates. The structure of the model as well as that of the templates were optimized and a simulation of 100 ps was run for all. The main structural properties of the model and the templates were compared and in conclusion the hBTC conformation was closely similar to that of hTGF. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0072-2.Electronic Supplementary Material available.  相似文献   

7.
The rabbit reticulocyte-type 15-lipoxygenase is capable of oxygenating biomembranes and lipoproteins without the preceding action of ester lipid cleaving enzymes. This reaction requires an efficient membrane binding, and the N-terminal beta-barrel domain of the enzyme has been implicated in this process. To obtain detailed information on the structural requirements for membrane oxygenation, we expressed the rabbit wild-type 15-lipoxygenase, its beta-barrel deletion mutant (catalytic domain), and several lipoxygenase point mutations as His-tagged fusion proteins in Escherichia coli and tested their membrane binding characteristics. We found that: (i) the beta-barrel deletion mutant was catalytically active and its enzymatic properties (K(M), V(max), pH optimum, substrate specificity) were similar to those of the wild-type enzyme; (ii) when compared with the wild-type lipoxygenase, the membrane binding properties of the N-terminal truncation mutant were impaired but not abolished, suggesting a role of the catalytic domain in membrane binding; and (iii) Phe-70 and Leu-71 (constituents of the beta-barrel domain) but also Trp-181, which is located in the catalytic domain, were identified as sequence determinants for membrane binding. Mutation of these amino acids to more polar residues (F70H, L71K, W181E) impaired the membrane binding capacity of the recombinant enzyme. These data indicate that the C-terminal catalytic domain of the rabbit 15-lipoxygenase is enzymatically active and that the membrane binding properties of the enzyme are determined by a concerted action of the N-terminal beta-barrel and the C-terminal catalytic domain.  相似文献   

8.
Amarasinghe GK  Rosen MK 《Biochemistry》2005,44(46):15257-15268
Autoinhibited proteins serve key roles in many signal transduction pathways, and therefore proper regulation of these proteins is critical for normal cellular function. Proto-oncogene Vav1 is an autoinhibited guanine nucleotide exchange factor (GEF) for Rho family GTPases. The core autoinhibitory module of Vav1 consists of the catalytic Dbl homology (DH) domain bound through its active site to an alpha helix centered about Tyr174 in the Acidic (Ac) region of the protein. Phosphorylation of Tyr174 and two other tyrosines in the Ac region, Tyr142 and Tyr160, relieves autoinhibition and activates the catalytic DH domain. In this study, we use biochemical and structural analyses of the Vav1 Ac and DH domains to examine the kinetic and thermodynamic properties of Vav1 activation by the Src family kinase, Lck, and the role of the Lck SH2 domain in this process. We find that in the Ac-DH fragment of Vav1, Tyr174, but not Tyr142 or Tyr160, is protected from phosphorylation by interactions with the DH domain. Binding of the Lck SH2 domain to phosphorylated Tyr142 increases kcat/KM for Tyr174 by 4-fold, likely because the kinase domain can act on the substrate effectively in an intramolecular fashion. These studies of the autoinhibited Ac-DH module provide the foundation for a quantitative structural and thermodynamic understanding of the regulation of full length Vav1. Moreover, kinetic pathways involving initial interactions with exposed sites or "access points", as observed here for Vav1, may be generally important in the regulation of many autoinhibited proteins.  相似文献   

9.
Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. To understand the structural basis of PTK6 function, we have determined the solution structure and backbone dynamics of the PTK6-Src homology 2 (SH2) domain using multidimensional NMR spectroscopy. The solution structure clearly indicates that the SH2 domain of human PTK6 contains a consensus alpha/beta-fold and a Tyr(P) peptide binding surface, which are common to other SH2 domains. However, two of the alpha-helices (alphaA and alphaB) are located on opposite faces of the central beta-sheet. In addition, the topological arrangement of a central four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD) differs from that of other Src family members. Backbone dynamics and Tyr(P) peptide titration experiments revealed that the putative ligand binding sites of the PTK6-SH2 domain undergo distinctive internal motions when compared with other regions of the protein. Surface plasmon resonance analysis showed that the Tyr(P) peptide had a dissociation constant of about 60 microm, which is substantially weaker binding than previously reported for Src family members. The solution structure together with data from the ligand binding mode of PTK6-SH2 provides insight into the molecular basis of the autoinhibitory role of PTK6.  相似文献   

10.

Background

Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism.

Methods

To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation.

Results

Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure.

Conclusions

The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation.

General significance

The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.  相似文献   

11.
A cell-free human polymorphonuclear leukocyte preparation containing both 15- and 5-lipoxygenase activities was found to oxygenate phosphatidylcholine at carbon-15 of the arachidonic acid moiety. No oxygenation at carbon-5 was found. Under similar incubation conditions, soybean and rabbit reticulocyte 15-lipoxygenases also oxygenated phosphatidylcholine, whereas rat basophilic leukemia cell 5-lipoxygenase, rabbit platelet 12-lipoxygenase and rat liver cytochrome P-450 preparations did not. Our results suggest that the oxygenation of phospholipids may be a unique property of the 15-lipoxygenases.  相似文献   

12.
Structural basis for the autoinhibition of focal adhesion kinase   总被引:9,自引:0,他引:9  
Lietha D  Cai X  Ceccarelli DF  Li Y  Schaller MD  Eck MJ 《Cell》2007,129(6):1177-1187
Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.  相似文献   

13.
Removal and repair of DNA damage by the nucleotide excision repair pathway requires two sequential incision reactions, which are achieved by the endonuclease UvrC in eubacteria. Here, we describe the crystal structure of the C-terminal half of UvrC, which contains the catalytic domain responsible for 5' incision and a helix-hairpin-helix-domain that is implicated in DNA binding. Surprisingly, the 5' catalytic domain shares structural homology with RNase H despite the lack of sequence homology and contains an uncommon DDH triad. The structure also reveals two highly conserved patches on the surface of the protein, which are not related to the active site. Mutations of residues in one of these patches led to the inability of the enzyme to bind DNA and severely compromised both incision reactions. Based on our results, we suggest a model of how UvrC forms a productive protein-DNA complex to excise the damage from DNA.  相似文献   

14.
Wang YH  Huang K  Lin X  Sun G 《Biochemistry》2007,46(35):10162-10169
Csk and Src are two protein tyrosine kinases that share a similar overall multidomain structural organization and a high degree of sequence homology but have different substrate specificities and regulatory properties. In this study, we generated chimeric kinases of Csk and Src by switching the C-terminal lobes of their catalytic domains, and we characterized their substrate specificity and regulatory properties. First, both Csk and Src phosphorylate Src as a common substrate, but on different Tyr residues. The C-terminal lobes of the kinase catalytic domain determined the site of phosphorylation on Src. Furthermore, toward several physiological substrates of Src, the substrate specificity was also determined by the C-terminal lobe of the catalytic domain regardless of the regulatory domains and the N-terminal lobe of the catalytic domain. Second, Csk and Src represent two general regulatory strategies for protein tyrosine kinases. Csk catalytic domain is inactive and is positively regulated by the regulatory domains, while Src catalytic domain is active and suppressed by its interactions with the regulatory domains. The regulatory properties of the chimeric kinases were more complicated. The regulatory domains and the N-lobe did not fully determine the response to a regulatory ligand, suggesting that the C-lobe also contributes to such responses. On the other hand, the intrinsic kinase activity of the catalytic domain correlates with the identity of the N-lobe. These results demonstrate that the chimeric strategy is useful for detailed dissection of the mechanistic basis of substrate specificity and regulation of protein tyrosine kinases.  相似文献   

15.
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.  相似文献   

16.
To examine the interactions between Src homology,domains and the tyrosine kinase catalytic domain of v-Src, various combinations of domains have been expressed in bacteria as fusion proteins. Constructs containing the isolated catalytic domain, SH2 + catalytic domain, and SH3 + SH2 + catalytic domains were active in autophosphorylation assays. For the catalytic domain of v-Src, but not for v-Abl, addition of exogenous Src SH3-SH2 domains stimulated the autophosphorylation activity. In contrast to results for autophosphorylation, constructs containing Src homology domains were more active towards a synthetic peptide substrate than the isolated catalytic domain. The ability of the SH2 and SH3 domains of v-Src to stabilize an active enzyme conformation was also confirmed by refolding after denaturation in guanidinium hydrochloride. Collectively the data suggest that, in addition to their roles in intermolecular protein-protein interactions, the Src homology regions of v-Src exert a positive influence on tyrosine kinase function, potentially by maintaining an active conformation of the catalytic domain.  相似文献   

17.
ATP/CTP:tRNA nucleotidyltransferases (NTases) and poly(A) polymerases (PAPs) belong to the same superfamily and their catalytic domains are remotely related. Based on the results of fold-recognition analysis and comparison of secondary structure patterns, we predicted that these two NTase families share three domains, corresponding to "palm," "fingers," and "fingernails" in the PAP crystal structure. A homology model of tRNA NTase from Methanococcus jannaschii was constructed. Energy minimization calculations of enzyme-nucleotide complexes and computer-aided docking of nucleotides onto the enzyme's surface were carried out to explore possible ATP and CTP binding sites. Theoretical models were used to guide experimental analysis. Recombinant His-tagged enzyme was expressed in Escherichia coli, and kinetic properties were characterized. The apparent K(M) for CTP was determined to be 38 microM, and the apparent K(M) for ATP was 21 microM. Three mutations of basic amino acids to alanine were created in a highly conserved region predicted to be in the vicinity of the nucleotide binding site. A deletion was also constructed to remove the C-terminal structural domain defined by the model; it retained about 1% of wild type enzymatic activity using CTP as co-substrate, confirming that detectable catalytic activity is exhibited by the N-terminal domain, as defined by the model. Our results suggest a mechanism of differential ATP and CTP binding, which explains how the tRNA NTase, having only one catalytic site, utilizes different nucleotide triphosphates depending on the nature of the tRNA substrate.  相似文献   

18.
19.
p62Dok, the rasGAP-binding protein, is a common target of protein-tyrosine kinases. It is one of the major tyrosine-phosphorylated molecules in v-Src-transformed cells. Dok consists of an amino-terminal Pleckstrin homology domain, a putative phosphotyrosine binding domain, and a carboxyl-terminal tail containing multiple tyrosine phosphorylation sites. The importance and function of these sequences in Dok signaling remain largely unknown. We have demonstrated here that the expression of Dok can inhibit cellular transformation by the Src tyrosine kinase. Both the phosphotyrosine binding domain and the carboxyl-terminal tail of Dok (in particular residues 336-363) are necessary for such activity. Using a combinatorial peptide library approach, we have shown that the Dok phosphotyrosine binding domain binds phosphopeptides with the consensus motif of Y/MXXNXL-phosphotyrosine. Furthermore, Dok can homodimerize through its phosphotyrosine binding domain and Tyr(146) at the amino-terminal region. Mutations of this domain or Tyr(146) that block homodimerization significantly reduce the ability of Dok to inhibit Src transformation. Our results suggest that Dok oligomerization through its multiple domains plays a critical role in Dok signaling in response to tyrosine kinase activation.  相似文献   

20.
Three-dimensional structural models of three members of the phosphoglucomutase (PGM) superfamily, parafusin, phosphoglucomutase-related protein and sarcoplasmic reticulum phosphoglucomutase, were constructed by homology modeling based on the known crystal structure of rabbit muscle phosphoglucomutase. Parafusin, phosphoglucomutase-related protein and sarcoplasmic reticulum phosphoglucomutase each have 50% or more identity with rabbit muscle phosphoglucomutase at the amino acid level and all are reported to exhibit no or minor phosphoglucomutase activity. There are four major insertions and two deletions in the parafusin sequence relative to PGM, all of which are located in surface-exposed loops connecting secondary structural elements. The remaining amino acid substitutions are distributed throughout the sequence and are not predicted to alter the polypeptide fold. Parafusin contains a putative protein kinase C site located on a surface loop in domain II that is not present in the homologs. Although the general domain structure and the active site of rabbit muscle phosphoglucomutase are preserved in the model of phosphoglucomutase-related protein, a major structural difference is likely to occur in domain 1 due to the absence of 55 amino acid residues in PGM-RP. This deletion predicts the loss of three alpha-helices and one beta-strand from an anti-parallel beta-sheet in this domain as compared with the rabbit muscle phosphoglucomutase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号