首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
甲酰肽受体研究进展   总被引:6,自引:0,他引:6  
程希远  王明伟 《生命科学》2004,16(3):154-159
趋化剂N-甲酰肽,如fMLF(N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸)与受体结合后,能在炎症和免疫应急反应时募集嗜中性粒细胞游走和聚集在病灶处,对抗并清除病原微生物。近年来发现的许多结构各异的非N-甲酰肽配体(包括炎症早期出现的内源性多肽)均具有趋化和激活噬菌性白细胞的作用。这些研究进展拓展了我们对甲酰肽受体功能的认识,同时也提出一系列新问题,值得深入探讨。  相似文献   

2.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

3.
The amino acid sequences of apolipoprotein E (apoE) from 63 different mammalian species have been downloaded from the protein database. The sequences were compared to human apoE4 to determine conserved and non‐conserved sequences of amino acids. ApoE4 is the major risk factor for the development of late onset Alzheimer's disease while apoE3, which differs from apoE4 by a single amino acid change at position 112, poses little or no risk for the development of this disease. Thus, the two proteins appear to be structurally and functionally different. Seven highly conserved regions, representing approximately 47 amino acids (of 299) have been found. These regions are distributed throughout the protein and reflect ligand binding sites as well as regions proposed to be involved in the propagation of the cysteine–arginine change at position 112 to distant regions of the protein in the N‐ and C‐terminal domains. Highly non‐conserved regions are at the N‐ and C‐terminal ends of the apoE protein.  相似文献   

4.
We have investigated the role of two polymorphic sites (R190W and N192K) on the binding and activation of the formyl peptide receptor (FPR) by viral and formyl peptides. WEDWVGWI, a peptide with antiviral activity derived from the membrane proximal region of feline immunodeficiency virus, binds with high affinity to FPR. The three tryptophans in the peptide are all essential for FPR binding, just as they were essential for antiviral activity [S. Giannecchini, A. Di Fenza, A.M. D'Ursi, D. Matteucci, P. Rovero, M. Bendinelli, Antiviral activity and conformational features of an octapeptide derived from the membrane-proximal ectodomain of the feline immunodeficiency virus transmembrane glycoprotein, J. Virol. 77 (2003) 3724]. Formyl-NleWEDWVGWI behaved as a weak partial agonist with FPR W190/N192 but a stronger partial agonist with FPR R190/K192 and FPR R190/N192. Formyl-NleNleWEDWVGWI behaved as a full agonist toward all three FPRs but exhibited a much higher EC(50) with W190/N192 FPR (300+/-45 nM) than for R190/K192 FPR (40+/-3 nM) or R190/N192 (60+/-8 nM). Formyl-MYKWPWYVWL preferentially activated R190/K192 and R190/N192 FPRs by>5 fold compared to W190/N192 FPR. Formyl-MFEDAVAWF, a peptide derived from a protein in Mycobacterium avium subsp. paratuberculosis and formyl-MFTFEPFPTN, a peptide derived from the N-terminus of chemotaxis inhibitory protein of Staphylococcus aureus with an added N-terminal formyl-methionine exhibited the greatest selectivity for R190/K192 and R190/N192 FPRs with approximately 10 fold lower EC(50)s than that observed with FPR W190/N192. Thus, individuals with the W190 polymorphism may display a reduced ability to detect certain formyl peptides.  相似文献   

5.
6.
7.
The human formyl peptide receptor (FPR) is N-glycosylated and activates phagocytes via G(i)-proteins. The FPR expressed with G(i)alpha(2)beta(1)gamma(2) in Sf9 insect cells exhibits high constitutive activity as assessed by strong inhibitory effects of an inverse agonist and Na(+) on basal guanosine 5(')-O-(3-thiotriphosphate) (GTPgammaS) binding. The aim of our study was to analyze the role of N-glycosylation in FPR function. Site-directed mutagenesis of extracellular Asn residues prevented FPR glycosylation but not FPR expression in Sf9 membranes. However, in terms of high-affinity agonist binding, kinetics of GTPgammaS binding, number of G(i)-proteins activated, and constitutive activity, non-glycosylated FPR was much less active than native FPR. FPR-Asn4Gln/Asn10Gln/Asn179Gln and FPR-Asn4Gln/Asn10/Gln exhibited similar defects. Our data indicate that N-glycosylation of N-terminal Asn4 and Asn10 but not of Asn179 in the second extracellular loop is essential for proper folding and, hence, function of FPR. FPR deglycosylation by bacterial glycosidases could be a mechanism by which bacteria compromise host defense.  相似文献   

8.
9.
Kim MK  Min do S  Park YJ  Kim JH  Ryu SH  Bae YS 《FEBS letters》2007,581(9):1917-1922
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair.  相似文献   

10.
Clostridium difficile may induce antibiotic‐associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB‐induced rise in intracellular‐free Ca2+ and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR‐1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR‐1. Domain analyses revealed that the N‐terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro‐inflammatory ligand effect can be triggered even by cleaved and, thus, non‐cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved ‘non‐cytotoxic’ fragments and (iii) an interaction of the N‐terminal glucosyltransferase domain instead of the C‐terminal receptor binding domain of TcdB with target cells.  相似文献   

11.
The formyl peptide receptor (FPR) has been widely used to study the kinetics of the interaction between ligand, receptor and G protein with real-time fluorescence methods. Because the wild type receptor rapidly signals, and is then desensitized and internalized once occupied by ligand, it has been difficult to study the uncoupled receptor form. We have examined a mutant form of the FPR expressed in U937 cells that does not bind G protein and is thus ideal to study the uncoupled form of the FPR in the intact cell. Using kinetic flow cytometry, we have measured the dissociation kinetics of a fluorescent ligand from this mutant in intact, permeabilized and fixed cells. We observed a novel uncoupled receptor form in the intact cell with a dramatically reduced off-rate (approximately 0.02 s-1) from LR in a broken cell preparation (approximately 0.2 s-1). Both receptor forms are retained in the presence of formaldehyde. We also observed this novel receptor form coexisting with the LRG complex when the wild type receptor is fixed in neutrophils or transfectants. These results complex when the wild type receptor is fixed in neutrophils o transfectants. These results lead us to suggest that there are distinct receptor structures in cells and membranes and that only a fraction of receptors in intact cells exist in the uncoupled form.  相似文献   

12.
The neutrophil FMLP receptor is involved in activation and subsequent response to certain chemotactic stimuli. The normal receptor has been reported to consist of several components, ranging in size from 43-94 kDa, and to contain both high and low affinity states. However, limited information is available on the gene/s which encode for the receptor. In this study, we have generated oligonucleotide probes derived from a published cDNA sequence encoding for one of the components of the FMLP receptor, and used these probes to amplify genomic DNA from HL-60 cells as well as normal human neutrophils, using the polymerase chain reaction. Such procedure resulted in the amplification of a single, approximately 1 kb fragment of genomic DNA identical in sequence to the cDNA described in the literature for one of the isoforms of the receptor. This finding supports the notion that the human FMLP receptor is encoded by at least one, intronless gene.  相似文献   

13.
Relaxin-3 is a newly identified insulin/relaxin superfamily peptide that plays a putative role in the regulation of food intake and stress response by activating its cognate G-protein-coupled receptor RXFP3. Relaxin-3 has three highly conserved arginine residues, B12Arg, B16Arg and B26Arg. We speculated that these positively charged arginines may interact with certain negatively charged residues of RXFP3. To test this hypothesis, we first replaced the negatively charged residues in the extracellular domain of RXFP3 with arginine, respectively. Receptor activation assays showed that arginine replacement of Glu141 or Asp145, especially Glu141, significantly decreased the sensitivity of RXFP3 to wild-type relaxin-3. In contrast, arginine replacement of other negatively charged extracellular residues had little effect. Thus, we deduced that Glu141 and Asp145, locating at the extracellular end of the second transmembrane domain, played a critical role in the interaction of RXFP3 with relaxin-3. To identify the ligand residues interacting with the negatively charged EXXXD motif of RXFP3, we replaced the three conserved arginines of relaxin-3 with negatively charged glutamate or aspartate, respectively. The mutant relaxin-3s retained the native structure, but their binding and activation potencies towards wild-type RXFP3 were decreased significantly. The compensatory effects of the mutant relaxin-3s towards mutant RXFP3s suggested two probable interaction pairs during ligand–receptor interaction: Glu141 of RXFP3 interacted with B26Arg of relaxin-3, meanwhile Asp145 of RXFP3 interacted with both B12Arg and B16Arg of relaxin-3. Based on these results, we proposed a relaxin-3/RXFP3 interaction model that shed new light on the interaction mechanism of the relaxin family peptides with their receptors.  相似文献   

14.
Although formyl peptide receptor like 2 (FPRL2) has been regarded as an important classical chemoattractant receptor, its functional role and signaling pathway have not been fully investigated, because of the lack of its specific ligand. Recently F2L, a heme-binding protein fragment peptide, has been reported as an FPRL2-selective endogenous agonist. In the present study, we examined the effect of Trp-Arg-Trp-Trp-Trp-Trp-CONH2 (WRWWWW, WRW4), on F2L-induced cell signaling. WRW4 inhibited the activation of FPRL2 by F2L, resulting in the complete inhibition of intracellular calcium increase and chemotactic migration induced by F2L. WRW4 also completely inhibited F2L-induced NF-kappaB activation in FPRL2-transfected HEK293 cells. WRW4 specifically inhibited F2L-induced intracellular calcium increase and chemotactic migration in mature monocyte-derived dendritic cells, which express FPRL2 but not the other FPR family. Taken together, WRW4 is the first FPRL2 antagonist and is expected to be useful in the study of FPRL2 signaling and in development of drugs against FPRL2-related cellular responses.  相似文献   

15.
Antipeptide antibodies directed to two amino acid sequences predicted from the cDNA encoding the insulin proreceptor have been used to study the relationship between the human receptors for insulin and insulin-like growth factor I (IGF-I). An antibody directed to a cytoplasmic domain near the membrane spanning region of the proreceptor inhibited the protein tyrosine kinase activity of both receptors whereas an antibody directed to the C terminus of the insulin receptor showed no cross-reactivity with the IGF-I receptor. The results establish that the cloned cDNA from the human placenta encodes the insulin receptor and not the closely related IGF-I receptor, that the IGF-I and insulin receptors share a specific amino acid sequence necessary for the expression of enzymatic activity, and that the C terminus of the insulin receptor is not conserved in the IGF-I receptor.  相似文献   

16.
Processing of the formyl peptide receptor by HL-60 cells   总被引:1,自引:0,他引:1  
Processing of the formyl peptide receptor by differentiated HL-60 cells has been studied using the photoaffinity label N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys-N epsilon-6-(4'-azido-2' -nitrophenylamino)-hexanoate. The receptor on live cells has an apparent molecular weight of 60,000 to 80,000 and possesses one predominant papain cleavage site on the cell exterior yielding a 35,000-Da fragment that contains the binding site. The affinity-labeled receptor was internalized with a t1/2 = 3.2 min at 37 degrees C, a t1/2 = 12 min at 24 degrees C, and was not internalized at 15 degrees C. The internalized receptor was localized in two intracellular compartments with buoyant densities less than that of the plasma membrane. The compartment with the lowest buoyant density was coincident with the Golgi marker galactosyltransferase. Intracellular dissociation of noncovalently bound peptide from the receptor occurred with a t1/2 = 25-28 min. Following a 3-h lag period, internalized affinity-labeled receptor was degraded by a first-order process with a t1/2 = 7 h.  相似文献   

17.
The migration of polymorphonuclear leukocytes from the blood to sites of infection in tissues is a hallmark of the innate immune response. Formylated peptides produced as a byproduct of bacterial protein synthesis are powerful chemoattractants for leukocytes. Formyl peptides bind to two different G protein-coupled receptors (formyl peptide receptor (FPR) and the low affinity formyl peptide receptor-like-1 (FPRL1)) to initiate a signal transduction cascade leading to cell activation and migration. Our analysis of expressed sequences from many cDNA libraries draws attention to the fact that FPRs are widely expressed in nonlymphoid tissues. Here we demonstrate that FPRs are expressed by normal human lung and skin fibroblasts and the human fibrosarcoma cell line HT-1080. The expression on fibroblasts of receptors for bacteria-derived peptides raises questions about the possible function of these receptors in nonleukocyte cells. We studied the function of FPRs on fibroblasts and find that stimulation with fMLP triggers dose-dependent migration of these cells. Furthermore, fMLP induces signal transduction including intracellular calcium flux and a transient increase in F-actin. The fMLP-induced adhesion and motility of fibroblasts on fibronectin require functional protein kinase C and phosphatidylinositol 3-kinase. This first report of a functional formyl peptide receptor in cells of fibroblast origin opens new possibilities for the role of fibroblasts in innate immune responses.  相似文献   

18.
5-HT3 receptors possess a number of highly conserved proline residues. We changed each of these to alanine, expressed the mutants as homomeric 5-HT3A receptors in HEK293 cells, and analyzed them with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Pro56, Pro104, Pro123, and Pro170 resulted in ablation of radioligand binding, whereas mutation of Pro257 and Pro301 did not. Only the latter were expressed at the plasma membrane but were non-functional. Thus the former, which are in the N-terminal domain, may be involved in forming correct receptor structure, while those in the transmembrane region (Pro257 and Pro301) are necessary for the function of the protein. To explore the conformational preference (propensity) of these residues we examined the proportion of cis-prolines and the influence of adjacent residues in known protein structures. 4.7% of prolines in the protein data base were in the cis conformation, and the distribution of amino acids adjacent to cis-prolines was not randomly distributed. Comparison of the proportion of each amino acid residue adjacent to a cis-proline revealed that aromatic and bend-facilitating residues were favored while those with beta-branched chains were not. Thus five residues (Gly, Pro, Tyr, Trp, Phe) and three residues (Pro, Tyr, Phe) were found more frequently than expected before and after cis-prolines respectively, whereas five residues (Val, Ile, Leu, Asp, Thr) and two residues (Asp, Glu) were found less frequently. Of the 20 proline residues in the 5-HT3A receptor subunit only Pro170 has adjacent residues that are favorable. Mutating these to non-favorable residues resulted in ablation of ligand binding, whereas replacement with alternative favorable residues did not. We therefore propose that Pro170, which is part of the characteristic cys-loop found in this family of proteins, may be in the cis conformation.  相似文献   

19.
The chemoattractant neutrophil formyl peptide receptor (FPR) binds bacterial and mitochondrial N-formylated peptides, which allows the neutrophils to find the bacterial source and/or site of tissue damage. Certain inflammatory disorders may be due in part to an impaired innate immune system that does not respond to acute bacterial damage in a timely fashion. Because the human FPR is encoded by a large number of different haplotypes arising from ten single-nucleotide polymorphisms, we examined the possibility that some of these haplotypes are functionally distinct. We analyzed the response of three common FPR haplotypes to peptides from Escherichia coli, Mycobacterium avium ssp. paratuberculosis, and human mitochondria. All three haplotypes responded similarly to the E. coli and mitochondrial peptides, whereas one required a higher concentration of the M. avium peptide fMFEDAVAWF for receptor downregulation, receptor signaling, and chemotaxis. This raises the possibility of additional bacterial species differences in functional responses among FPR variants and establishes a precedent with potentially important implications for our innate immune response against bacterial infections. We also investigated whether certain FPR haplotypes are associated with rheumatoid arthritis (RA) by sequencing FPR1 from 148 Caucasian individuals. The results suggested that FPR haplotypes do not significantly contribute toward RA. George J. Saari, Deceased.  相似文献   

20.
The G protein-coupled vasopressin V2 receptor (V2 receptor) contains a pair of conserved cysteine residues (C112 and C192) which are thought to form a disulfide bond between the first and second extracellular loops. The conserved cysteine residues were found to be important for the correct formation of the ligand binding domain of some G protein-coupled receptors. Here we have assessed the properties of the V2 receptor after site-directed mutagenesis of its conserved cysteine residues in transiently transfected human embryonic kidney (HEK 293) cells. Mutant receptors (C112S, C112A and C192S, C192A) were non-functional and located mostly in the cell's interior. The conserved cysteine residues of the V2 receptor are thus not only important for the structure of the ligand binding domain but also for efficient intracellular receptor transport. In addition to the functional significance of the conserved cysteine residues, we have also analyzed the defects of two mutant V2 receptors which cause X-linked nephrogenic diabetes insipidus (NDI) by the introduction of additional cysteine residues into the second extracellular loop (mutants G185C, R202C). These mutations are assumed to impair normal disulfide bond formation. Mutant receptor G185C and R202C were efficiently transported to the plasma membrane but were defective in ligand binding. Only in the case of the mutant receptor R202C, the more sensitive adenylyl cyclase activity assay revealed vasopressin-stimulated cAMP formation with a 35-fold increased EC(50) value and with a reduced EC(max), indicating that ligand binding is not completely abolished. Taking the unaffected intracellular transport of both NDI-causing mutant receptors into account, our results indicate that the observed impairment of ligand binding by the additional cysteine residues is not due to the prevention of disulfide bond formation between the conserved cysteine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号