首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrated control of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) has become necessary in South Africa, as biological control alone is perceived to be too slow in controlling the weed. In total, seven insect biological control agents have been released on water hyacinth in South Africa. At the same time, herbicides are applied by the water authorities in areas where the weed continues to be troublesome. This study investigated the assumption that the two control methods are compatible by testing the direct toxicity of a range of herbicide formulations and surfactants on two of the biological control agents released against water hyacinth, the weevil, Neochetina eichhorniae Warner (Coleoptera: Curculionidae) and the water hyacinth mirid, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae). A number of the formulations used resulted in significant mortality of the mirid and the weevil. Products containing 2,4-D amine and diquat as active ingredients caused higher mortality of both agents (up to 80% for the mirid) than formulations containing glyphosate. Furthermore, when surfactants were added to enhance herbicide efficiency, it resulted in increased toxicity to the insects. We recommend that glyphosate formulations should be used in integrated control programmes, and that surfactants be avoided in order to reduce the toxic nature of spray formulations to the insect biological control agents released against water hyacinth.  相似文献   

2.
The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.  相似文献   

3.
Between one and seven biological control agents have been released against water hyacinth (Eichhornia crassipes (Mart.) Solms) in at least 30 countries, with varied success. A mirid, Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae), the most recent agent released, is damaging to the plant on the African continent. It could be useful in the USA where water hyacinth remains a problem, but its introduction remains in doubt because during host specificity trials, it developed on Pontederia cordata L. (pickerelweed), indigenous to the USA. However, it did not establish on pickerelweed monocultures during South African field trials, and only light spillover feeding occurred where the two plants coexisted suggesting that the use of P. cordata as a host is a laboratory artefact and it may be suitable for use in the USA, if its thermal physiology allows establishment. We reran models developed for South Africa using CLIMEX to predict whether the mirid will establish where water hyacinth and pickerelweed co-occur, but not where pickerelweed occurs in the absence of water hyacinth. The models suggest that the mirid's distribution will be limited by cold winter temperatures and insufficient thermal accumulation to the southern states of the USA, within the main distribution of water hyacinth. Even though some spillover feeding on pickerelweed might result where the two plants co-occur, the risk of population level effects seems minimal and the risk to more northern pickerelweed negligible. The benefits, including improved habitat for pickerelweed, associated with further suppression of water hyacinth, outweigh the minimal risk of collateral damage to pickerelweed.  相似文献   

4.
The fungus Alternaria eichhorniae isolate 5 (Ae5) is being developed as an effective mycoherbicide against water hyacinth in Egypt. To improve its pathogenicity, integration with 3,4-methylenedioxy trans-cinnamic acid (MDCA), a phenylpropanoid pathway inhibitor that weakens the plant's defense system, was explored. The severity of the disease induced by Ae5 increased when applied to water hyacinth plants pretreated with MDCA. Infection with Ae5 amplified the total phenol concentration in diseased water hyacinth leaves, whereas MDCA reduced it. Plants treated with both Ae5 and MDCA contained a comparable level of total phenols to that in the untreated control plants. Phenol-storing cells were located at three sites in the leaf, within the adaxial palisade tissue, above the abaxial epidermis and in the vicinity of the vascular bundles. Dimensions of these three cell types were increased by infection with Ae5, decreased by MDCA treatment and, in the combined treatment, were similar to those in control leaves. Increased numbers of phenol-storing cells were found only in the region near vascular bundles of plants treated with either Ae5 or MDCA.  相似文献   

5.
Taosa longula Remes Lenicov (Hemiptera: Dictyopharidae) is a planthopper from the South American tropics that feeds on water hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae). The biology of T. longula was studied in the laboratory and field to evaluate it as a potential biological control agent for this widespread aquatic weed. The developmental time of nymphs was recorded at different temperatures (15, 19, 23, 25, 27 and 30 °C), and developmental threshold temperatures were obtained for the different instars. The host range was evaluated in terms of development and feeding preference. Development from instar I to adult was recorded in two no-choice trials, one with cut leaves of Pontederiaceae, and a second with growing whole plants. In the cut-leaf tests, adults were obtained from Pontederia cordata var. cordata, P. rotundifolia and water hyacinth. In the whole plant test, T. longula adults were obtained only from water hyacinth. Feeding preference was evaluated by means of a paired-choice test with 10 T. longula first instars on whole plants of P. c. cordata, P. rotundifolia and water hyacinth. The number of insects that fed on water hyacinth was significantly higher than on P. c. cordata and P. rotundifolia. Taosa longula showed a clear preference for water hyacinth and exhibited warm climate requirements, making it an attractive candidate for water hyacinth biological control in tropical and subtropical areas.  相似文献   

6.
Reports of the Intergovernmental Panel on Climate Change (IPCC) indicate that temperature rise is still the general trend of the global climate in the 21st century. Invasive species may benefit from the increase in temperature, as climate can be viewed as a resource, and the increase in the available resources favors the invasibility of invasive species. This study aimed to assess the overwintering growth of the cosmopolitan invasive plant water hyacinth (Eichhornia crassipes) at its northern boundary. Using E. crassipes as a model plant, a cross‐year mesocosm experiment was conducted to determine 17 plant functional traits, including growth, morphological, root topological, photosynthetic, and stoichiometric traits, under climate warming (ambient, temperature rises of 1.5°C and 3.0°C), and water drawdown or water withdrawal (water depths of 1, 10, and 20 cm) treatments. The overwintering growth of E. crassipes was facilitated by climate warming and proper water drawdown, and climate warming played a leading role. A temperature rises of 3.0°C and a water depth of 10 cm were the most suitable conditions for the overwintering and rooting behavior of the plant. Controlling the temperature to within 1.5°C, an ambitious goal for China, still facilitated the overwintering of E. crassipes. With climate warming, the plant can overwinter successfully, which possibly assists it in producing and spreading new ramets in the vernal flood season. The new rooting behavior induced by ambient low temperature may be viewed as a unique growth adaptation strategy for a niche change, as it helps these plants invade empty niches left by dead free‐floating plants on the water surface following winter freezes. With continued global warming, the distribution of the plant may expand northward, and eradication of the plant during the winter water drawdown period may be a more effective strategy.  相似文献   

7.
Invasive aquatic weeds are managed with herbicides to reduce their negative impacts on waterways in many areas, including the California Delta Region. Herbicides create a dynamic environment of living and decomposing plant matter that could affect larval mosquitoes and other invertebrates, such as their predators and competitors. Our objective was to compare the number of larval mosquitoes in water or water hyacinth, before and after an herbicide treatment. We created replicated pond mesocosms with water hyacinth, water hyacinth treated with glyphosate and an oil adjuvant, open water, and water with glyphosate plus adjuvant. We sampled for larval mosquitoes and other aquatic invertebrates. Before herbicide addition, there was a trend for more larval mosquitoes in open water tanks than in tanks with water hyacinth. Herbicide application resulted in an immediate decrease of larval mosquitoes. As decay progressed, larval mosquitoes became most abundant in mesocosms with herbicide‐treated hyacinth and very few larval mosquitoes were found in other habitat treatments. Although the numbers of predatory and competitor insects had some variation between treatments, no clear pattern emerged. This information on how invasive weed management with herbicides affects larval mosquitoes will allow control practices for larval mosquitoes and invasive weeds to be better integrated.  相似文献   

8.
Megamelus scutellaris Berg (Delphacidae) and Taosa (Cuernavaca) longula Remes Lenicov (Dictyopharidae) are specialist planthoppers that feed and reproduce on the invasive aquatic weed, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae). They overlap geographically in several regions of South America and may, therefore, interact and compete for food and microhabitat. Preliminary observations indicated that both species do not feed on the same part of the plant. We hypothesized that they partition the resource; hence, we studied (1) the feeding mechanism at the tissue level and (2) the spatial distribution of both species on the water hyacinth plant. Salivary sheaths were detected through histological sections of plant tissues using light microscopy. The location of either planthopper species on the plant was recorded when in the presence or absence of the other species. Both species produced true salivary sheaths, mostly branched (M. scutellaris: 82%; T. longula: 84%), ending in phloem (M. scutellaris: 56%; T. longula: 52%), and xylem tissues (M. scutellaris: 24%; T. longula: 28%). They resided on different parts of the water hyacinth plant even when they did not coexist; nymphs of T. longula occurred primarily on the back side of the leaf laminas, while nymphs of M. scutellaris occupied the basal zone of the petioles. This study shows that these planthoppers complement each other and could be used in combination as control agents for water hyacinth. Further experimental studies and field observations are necessary to quantify interactions.  相似文献   

9.
周晴  潘晓云 《植物生态学报》2014,38(10):1093-1098
为了探究凤眼蓝(别名凤眼莲, Eichhornia crassipes)入侵中国南部基塘区的主要原因, 对历史文献与档案资料进行了综合分析, 结果表明: 凤眼蓝在中国大陆的出现早于1930年。1911年后, 凤眼蓝曾入侵浙江省杭嘉湖平原水网河道。凤眼蓝也是1911年以来珠江三角洲地区十分常见的水生植物。1911-1980年, 基塘农业是浙江省的杭嘉湖地区和广东省珠江三角洲地区的典型农业经营模式, 凤眼蓝在这两个地区都曾被用作有机肥。20世纪50年代末至70年代, 长江流域曾推广凤眼蓝栽培技术, 对凤眼蓝进行了大规模的养植, 但1950-1980年的广积肥运动控制了凤眼蓝的繁殖速度和规模。1980年以来, 基塘地区成为长江三角洲和珠江三角洲城镇化与工业化快速发展的区域, 传统的循环农业经营模式普遍被废弃, 同时, 基塘区河网湿地水文生态环境的改变是凤眼蓝入侵中国南部基塘区的主要原因。  相似文献   

10.
Eichhornia crassipes plants brought from the River Nile were cultured in jars containing river water supplemented with various concentrations of Cd, Pb, and Sr (0 to 100 μg cm-3), added simultaneously. Treatment continued for 20 d during which each cultivation solution was being replaced with fresh one every 3 d. The growth of Eichhornia was drastically retarded at heavy metal concentrations higher than 15 μg cm-3. At concentrations 15 or 25 μg cm-3, the accumulation of Cd and Pb to levels several times higher than those in control plants was found. More than 50 % of the uptaken metals were retained by roots alone. Leaves and leaf petiols received around 30 and 20 % of the accumulated metals, respectively. X-ray microanalysis indicated the presence of the three heavy metals in Ca oxalate crystals. Content of metals in the crystals increased progressively over time of exposure in a way similar to those in whole plant tissues. These results suggest a possible role for Ca oxalate crystalization in toxic heavy metal deposition and thus tolerance by Eichhornia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
M.P. Hill 《BioControl》1998,43(2):215-224
The frond-feeding weevil, Stenopelmus rufinasus Gyllenhal, was imported into quarantine for testing as a potential natural enemy for the invasive fern Azolla filiculoides Lamarck in South Africa. Adult S. rufinasus lived for approximately 55 days during which the females produced on average 325 offspring. The developmental period for the immature stages (egg, three larval instars and pupation) was about 20 days indicating the potential for several overlapping generations per year. Both the adults and the larvae caused severe damage to A. filiculoides in the laboratory. Host specificity of this insect was determined by adult no-choice oviposition and larval starvation tests on 31 plant species in 19 families. Adult feeding, oviposition and larval development was only recorded on the Azolla species tested (A. filiculoides, A. pinnata subsp. poss. asiatica R.K.M. Saunders and K. Fowler, A. pinnata subsp. africana (Desv.) R.K.M. Saunders and K. Fowler and A. nilotica De Caisne Ex Mett.). A. filiculoides proved to be significantly the most suitable host for the weevil. The low adult emergence from A. nilotica and A. pinnata subsp. africana would most probably prevent the weevil from establishing on them in the field. A. pinnata subsp. poss. asiatica which supported greater development, is thought to be introduced and has a weedy phenology in South Africa and is thus of low conservation value. Therefore, any damage inflicted on this plant in the field may be an acceptable trade-off for the predicted impact of S. rufinasus on the aggressive exotic weed, A. filiculoides.  相似文献   

12.
Water hyacinth Eichhornia crassipes (Pontederiaceae) is one of the world's worst invasive species, responsible for damaging aquatic systems in many warmer parts of the globe including north America, Africa, Asia and Australia. The planthopper Megamelus scutellaris Berg (Delphacidae) has been released in USA and approved for release in South Africa for biocontrol of water hyacinth. We assessed this agent for suitability for release in Australia and found that a related native aquatic plant, Monochoria cyanea (Pontederiaceae) is within the fundamental host range of this insect. Adult survival, oviposition and development of nymphs to adult was equally high on M. cyanea as on the target species, although the quality of these next generation adults was lower than those reared on the target species. This demonstrates that M. scutellaris is not sufficiently specific for release in Australia. Nymphal development to adults occurred only in very low numbers on the three other Australian species of Monochoria. M. cyanea only occurs in Australia so M. scutellaris is still a possible water hyacinth biocontrol candidate for other regions depending on the results of assessment of the risk to local species of Monochoria. This study demonstrates the effectiveness of modern biocontrol agent assessment and reinforces the importance of testing of local non-target species.  相似文献   

13.
1. Bottom‐up regulation is prevalent in plant–herbivore interactions and is thought to be particularly important in the case of aquatic plants and their specialist insect herbivores. 2. Recently published mesocosm studies have shown that the abundance of specialist Neochetina weevils, N. bruchi and N. eichhorniae, on water hyacinth (Eichhornia crassipes) are principally under the influence of nutrients in plant tissues. 3. We examined historical patterns of the abundance of these species of semi‐aquatic weevils in two water bodies from catchments with significantly different nutrient loads in subtropical Australia to test the validity of the published conceptual model of bottom‐up regulation. 4. Our results revealed that these weevils are indeed under bottom‐up regulation under field conditions. However, the nature of this regulation appears to be influenced by the broader catchment context of the water hyacinth‐infested water body, with plant tissue nutrients influencing weevil abundance more in the catchment with lower nutrient run‐offs. 5. Our findings reaffirm the importance of bottom‐up regulation in plant–insect interactions, add to the growing evidence of indirect effects spanning terrestrial and aquatic ecosystems, and inform management of water hyacinth using these weevils as biocontrol agents.  相似文献   

14.
Since publication of the first record of Eichhornia crassipes in Cameroon in 1997, the weed has become highly invasive in the Wouri River Basin. Between June and September 2014, a socio-economic survey using participatory and qualitative methods was undertaken in the riparian villages of the Wouri River Basin to assess the perception of respondents to the presence of water hyacinth. The survey revealed that water hyacinth was a significant threat to activities along the river, which included fishing, sand extraction and river transportation. The presence of water hyacinth mats reduced catch rates of several common fish species, river transportation by 75%, and significantly reduced the income for sand extraction. Cameroon employs manual clearing of water hyacinth; however, respondents indicated they would consider other control methods, provided they do not have any negative impacts.  相似文献   

15.
【目的】了解大水面放养水葫芦对富营养化湖泊水体可培养细菌群落结构和多样性的影响。【方法】采用稀释平板法,分别对云南滇池紫根水葫芦放养区(ZW)、野生型普通水葫芦放养区(PW)、未放养水葫芦对照区(CK)水体中细菌进行分离,并对其16S r RNA序列进行分析。【结果】分别从ZW、PW、CK 3种水体分离得到54、49、40株菌落形态差异的细菌,Shannon-Wiener多样性指数分别为3.17、3.07、2.73,细菌数量分别为1.35×107、8.35×106、2.70×106 CFU/L。16S r RNA序列分析表明,ZW、PW、CK 3种水体可培养细菌主要包括变形菌门α亚群(Alphaproteobacteria,35.1%、32.4%和40%)、放线菌门(Actinobacteria,18.9%、32.4%和20%)、变形菌门β亚群(Betaproteobacteria,13.5%、5.9%和16.0%)、变形菌门γ亚群(Gammaproteobacteria,13.5%、14.6%和12.0%)、拟杆菌门(Bacteroidetes,13.5%、8.8%和8.0%)和厚壁菌门(Firmicutes,2.7%、5.9%和4.0%)。在属的水平上,3种水体仅有鞘氨醇盒菌属(Sphingopyxis)、红细菌属(Rhodobacter)、黄色杆菌属(Xanthobacter)、新鞘脂菌属(Novosphingobium)、鞘氨醇单胞菌属(Sphingomonas)、假单胞菌属(Pseudomonas)、微杆菌属(Microbacterium)、链霉菌属(Steptomyces)、黄杆菌属(Flavobacterium)、芽孢杆菌属(Bacillus)等10个属的细菌为共有菌属。【结论】大水面放养水葫芦提高了富营养化湖泊水体中可培养细菌的多样性,改变了细菌的群落结构。  相似文献   

16.
Adaptation to temperature changes is vital to reduce adverse effects on individuals, and some may present phenotypic changes, which might be accompanied with physiological costs in fitness traits. The objective of this study was to determine whether the two strains of the herbivore Eccritotarsus catarinensis, a biological control agent against water hyacinth in South Africa, differ in their responses to temperature according to their geographical origin.We experimentally quantified the responses of the two strains, at three constant temperatures: 20 °C, 25 °C and 30 °C, using laboratory cultures that originated from Brazil and Peru, where climates differ. Reproductive output, egg hatching rate, sex ratio and longevity were recorded at each temperature. Fitness traits for both strains were significantly reduced at 30 °C compared with 25 °C and 20 °C in two successive generations. Nonetheless, Peruvian individuals continued their development at 30 °C, whereas Brazilian individuals that succeeded in emerging did not continue their development. In contrast, sex ratio was unaffected by temperature. The Peruvian strain of E. catarinensis presented different phenotypes depending on temperature and was more adapted to extreme high temperature than the Brazilian strain. The tropical origin of the population induces the insect to tolerate the extreme high temperature. We suggest that the Peruvian strain could be better suited for release to control water hyacinth in nature, particularly in regions where temperature is high.  相似文献   

17.
ABSTRACT

Water hyacinth, Pontederia crassipes (Martius) [≡Eichhornia crassip es (Martius) Solms-Laubach] (Pontederiaceae), is native to South America, but has expanded its range to many other regions of the world including South Africa. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released as a biological control agent and has established in several regions. Recently, the indigenous species Echthrodelphax migratorius Benoit, (Hymenoptera: Dryinidae) was discovered in South Africa parasitising M. scutellaris. This newly discovered relationship might have repercussions for the efficacy of biological control of water hyacinth by the delphacid. The wasp may negatively impact M. scutellaris populations making it difficult for the agent to successfully manage the invasive weed. Contrarily, the parasitoid may be beneficial by keeping the M. scutellaris populations stable, serving as a natural enemy.  相似文献   

18.
Parthenium hysterophorus (parthenium) is a weed of international importance and is spreading rapidly in sub-Saharan Africa. Consequently, it has been targeted for biocontrol in South Africa since 2003. Based on precedents elsewhere in the world, the defoliating beetle Zygogramma bicolorata was prioritised as a candidate agent. Although no-choice tests, involving some 48 test plant species, indicated a significant preference for parthenium, significantly reduced feeding and oviposition was recorded on some species. Multiple-choice tests resolved many of these non-target results; however, Helianthus annuus (sunflower) was still selected for oviposition and feeding. Of the 12 sunflower cultivars tested, four were selected for oviposition, while two were selected for oviposition and feeding. These six cultivars were then subjected to larval development trials, together with three native and two weed species (in the Asteraceae). These trials showed high levels of complete development on parthenium, significantly reduced development on sunflower cultivars, and partial development on only one of the weed species. Finally, a risk assessment was conducted on the six sunflower cultivars to quantify Z. bicolorata feeding and reproductive performance. Feeding risk calculations revealed these cultivars to have an extremely low risk (<0.2%) of supporting Z. bicolorata feeding and development. Similarly, reproductive risk calculations showed a very low risk (<0.16%) of supporting viable Z. bicolorata populations. These data are supported by findings from both the native (Mexico) and introduced ranges (Australia, India) of Z. bicolorata, where it has never been recorded as a pest of sunflower. These considerations were accepted by the regulatory authorities and in August 2013, Z. bicolorata became the second insect agent to be released in South Africa for the biocontrol of parthenium.  相似文献   

19.
Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky & Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins & Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.  相似文献   

20.
Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high‐lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre‐ and post‐release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree‐day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree‐day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K =502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high‐lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource‐limited countries, to prevent wasting efforts in getting an agent established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号