首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A method has been developed for identifying the step in a detergent-mediated reconstitution procedure at which an integral membrane protein can be associated with phospholipids to give functional proteoliposomes. Large liposomes prepared by reverse-phase evaporation were treated with various amounts of the detergents Triton X-100, octyl glucoside, or sodium cholate as described in the preceding paper [Paternostre, M.-T., Roux, M., & Rigaud, J. L. (1988) Biochemistry (preceding paper in this issue)]. At each step of the solubilization process, we added bacteriorhodopsin, the light-driven proton pump from Halobacterium halobium. The protein-phospholipid detergent mixtures were then subjected to SM2 Bio-Beads treatments to remove the detergent, and the resulting vesicles were analyzed with respect to protein insertion and orientation in the membrane by freeze-fracture electron microscopy, sucrose density gradients, and proton pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With sodium cholate, proteoliposomes were formed only from ternary phospholipid-protein-detergent micelles. With octyl glucoside, besides proteoliposome formation from ternary mixed micelles, direct incorporation of bacteriorhodopsin into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes with optimal proton pumping activity. With Triton X-100, protein insertion into destabilized liposomes was also observed but involved a transfer of the protein initially present in phospholipid-Triton X-100-protein micelles into Triton X-100 saturated liposomes. Our results further demonstrated that protein orientation in the resulting proteoliposomes was critically dependent upon the mechanism by which the protein was incorporated.  相似文献   

3.
Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane.  相似文献   

4.
1. A fraction enriched in plasma membranes of human tumour KB cell line, a permissive cell for adenovirus type 5, was obtained. 2. Electrophoresis of the membranes in polyacrylamide gels with buffers containing sodium dodecyl sulphate showed that the membranes after reduction with 2-mercaptoethanol contained over 20 polypeptide species. Three polypeptides were glycosylated and had apparent mol.wts. of 92000, 72000 and 62000. 3. The glycoproteins and the specific receptors responsible for adenovirus adsorption to the membranes were readily extracted into solutions containing low concentrations of Triton X-100. Glycolipids and proteins were also made soluble. A membranous residue obtained after Triton X-100 extraction was enriched in several proteins that appeared to consist of polypeptides of lower molecular weight than the average of KB membrane polypeptides. 4. Sphingomyelin, cholesterol and triglycerides were similarly concentrated in the insoluble residue remaining after successive extractions of KB membranes with Triton X-100. Further, ceramide trihexoside was significantly less easily extracted from KB membranes than lactosyl ceramide. 5. The differences noted in the ease of extraction of membrane components are discussed. 6. The components of membranes made soluble by detergent extraction and containing the large part of the KB membrane glycoproteins were subjected to chromatography on Sepharose 6B and DEAE-cellulose and to isoelectric focusing in the presence of buffers containing Triton X-100. In general, the degree of separation into fractions enriched in individual glycoproteins was disappointing. Possible reasons for the poor fractionation of membrane components by chromatographic systems conveniently used for purification of proteins and glycoproteins of non-membranous origin are briefly discussed.  相似文献   

5.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

6.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

7.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

8.
To identify integral and peripheral membrane proteins, highly purified coated vesicles from bovine brain were exposed to solutions of various pH, ionic strength, and concentrations of the nonionic detergent Triton X-100. At pH 10.0 or above most major proteins were liberated, but four minor polypeptides sedimented with the vesicles. From quantitative analysis of phospholipids in the pellet and extract, we determined that at a pH of up to 12 all phospholipids could be recovered in the pellet. Electron microscopic examination of coated vesicles at pH 12.0 showed all vesicles devoid of coat structures. Treatment with high ionic strength solutions (0-1.0 M KCl) at pH 6.5-8.5 also liberated all major proteins, except tubulin, which remained sedimentable. The addition of Triton X-100 to coated vesicles or to stripped vesicles from which 90% of the clathrin had been removed resulted in the release of four distinct polypeptides of approximate Mr 38,000, 29,000, 24,000 and 10,000. The 38,000-D polypeptide (pK approximately 5.0), which represents approximately 50% of the protein liberated by Triton X-100, appears to be a glycoprotein on the basis of its reaction with periodic acid-Schiff reagent. Extraction of 90% of the clathrin followed by extraction of 90% of the phospholipids with Triton X-100 produced a protein residue that remained sedimentable and consisted of structures that appeared to be shrunken stripped vesicles. Together our data indicate that most of the major polypeptides of brain coated vesicles behave as peripheral membrane proteins and at least four polypeptides behave as integral membrane proteins. By use of a monoclonal antibody, we have identified one of these polypeptides (38,000 mol wt) as a marker for a subpopulation of calf brain coated vesicles.  相似文献   

9.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35 000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

10.
Effects of detergents such as cholate, deoxycholate and Triton X-100 were studied on N-and ring-hydroxylation of 2-acetamidofluorene by reconstituted and unresolved microsomal systems from livers of hamsters pretreated with 3-methylcholanthrene. Triton X-100 (2.5 mg/nmol of cytochrome P-448) inhibited N-and ring-hydroxylation by wholemicrosomal preparations by 40 and 90% respectively Deoxycholate at the same concentration inhibited both hydroxylations completely, whereas cholate inhibited N-and ring-hydroxylation by 40 and 50% respectively. In reconstitution studies, the presence of Triton X-100(0.5-1.0mg/nmol of cytochrome P-448) along with unsolubilized cytochrome P-448 fraction and solubilized reductase fraction increased N-hydroxylation to an appreciable extent compared with ring-hydroxylation. Both cholate and deoxycholate at 0.5-1.0 mg concentrations had a greater stimulatory effect on ring-than on N-hydroxylation activity in such a reconstituted system.  相似文献   

11.
The Triton X-100-resistant residue of brain membranes contains appreciable amounts of S-100 proteins. This fraction of S-100 can be solubilized by high concentrations of EDTA plus or minus high concentrations of KCl. Whereas KCl (0.6 M) extracts the detergent-resistant S-100, NaCl (1 M) does not. Endogenous Ca2+ is required and is sufficient for S-100 to remain associated with the detergent-resistant residue. However, 0.6 M KCl extracts a further fraction of Triton X-100-resistant S-100. In contrast, the Triton X-100-extractable fraction of S-100 resists the action of EDTA. These data suggest that Ca2+ regulates the extent of association of S-100 with Triton X-100-resistant components in brain membranes, whereas the association of S-100 with the lipid bilayer of brain membranes and/or with some intrinsic membrane proteins is less Ca2+-regulated. Several S-100-binding proteins are identified in the detergent-resistant residue of brain membranes by an overlay procedure.  相似文献   

12.
Analysis of brush border membrane proteins by gel electrophoresis has revealed a complex polypeptide composition. We have investigated the use of Triton X-114 phase partitioning to fractionate such proteins on the basis of their degree of hydrophobicity. Each of the fractions was composed of a complex but distinct set of proteins. Most proteins were solubilized by Triton X-114 and partitioned into the detergent-poor fraction. Trehalase, gamma-glutamyl transpeptidase, and leucine aminopeptidase were well solubilized (greater than 80%) and enriched 5.1-, 3.9-, and 2.5-fold in the detergent-rich fraction. In contrast, alkaline phosphatase and 5'-nucleotidase were poorly solubilized. The specific activities of these enzymes were increased 2.7- and 2.3-fold in the insoluble protein fraction. Maltase was almost completely solubilized and partitioned into the detergent-poor fraction with a small enrichment factor (1.3). These results suggest that Triton X-114 phase partitioning could be useful as a first step in the purification of many brush border membrane proteins.  相似文献   

13.
Cytovillin and other microvillar proteins of human choriocarcinoma cells   总被引:7,自引:0,他引:7  
Microvilli were isolated from cultured human JEG-3 choriocarcinoma cells using a gentle shearing method. The protein components of the isolated microvilli were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The major Mr 42,000 and Mr 100,000 polypeptide bands reacted with anti-actin and anti-alpha-actinin antisera, respectively. Extraction of the isolated JEG-3 microvilli with Triton X-100 left an insoluble cytoskeletal residue containing mainly actin, alpha-actin, and polypeptides of Mr 200,000, 55,000 and 35,000. The Mr 35,000 polypeptide remained insoluble only at high concentrations of free Ca2+. Immunoblotting analysis of the JEG-3 microvilli indicated that they were devoid of tropomyosin, although the total JEG-3 protein lysates gave a strong positive reaction with anti-tropomyosin antiserum. The different subcellular localization of cytovillin and tropomyosin was also shown by indirect immunofluorescence microscopy. Cytovillin, an Mr 75,000 microvillus-specific membrane protein of JEG-3 cells, existed in an oligomeric form (dimer or trimer) as shown by gel filtration of Triton X-100 solubilized microvillar proteins and by native polyacrylamide gel electrophoresis of purified cytovillin. Disulfide bridges were not involved in the aggregation, because the mobility of cytovillin was similar under reducing and nonreducing conditions in SDS-PAGE. Cytovillin was shown to be closely related to ezrin, a minor component of chicken intestinal brush border microvilli.  相似文献   

14.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

15.
Cytochrome bc1 isolated from Triton X-100-solubilized mitochondrial membranes contains up to 120 nmol of Triton X-100 bound per nanomole of the enzyme. Purified cytochrome bc1 is fully active; however, protein-bound Triton X-100 significantly interferes with structural studies of the enzyme. Removal of Triton X-100 bound to bovine cytochrome bc1 was accomplished by incubation with Bio-Beads SM-2 in the presence of sodium cholate. Sodium cholate is critical because it does not interfere with the adsorption of protein on the hydrophobic surface of the beads. The resulting Triton X-100-free cytochrome bc1 retained nearly full activity, absorption spectra, subunit, and phospholipid composition.  相似文献   

16.
The detergent effects of lysolecithin, Triton X-100, and cholate were compared in the calcium transport ATPase system of sarcoplasmic reticulum. Lysolecithin was found to act as a detergent in releasing the ATPase for subsequent purification, but did not strongly promote exchange of membrane lipid classes. Both Triton and cholate promoted exchange of membrane phospholipid. Higher concentrations of Triton and cholate inhibited the ATPase activity, but the enzyme could be reactivated by addition of phospholipid or fatty acid directly to the mixture. Under these conditions, reactivation depended on the presence of lipid acyl chains, rather than specific head groups. It was also found that Triton could be readily removed from the mixture by passing the enzyme through a hydrophobic bead column. Calcium transport was reactivated in the resulting membranes.  相似文献   

17.
J Szkudlarek  W Turski 《Enzyme》1975,19(5-6):329-336
A hypotonic medium and nonionic detergents Triton X-100 and digitonin have no influence on the activity of fumarase in the homogenate or in the mitochondrial fraction either. Ionic detergents of deoxycholate, cholate and sodium dodecyl sulphate exert an inhibiting influence. The activity of enzyme was determined in an L-malate-fumarate system. 1 h of incubation and the original Racker's method gave similar results. The lack of 'latency', found for the mitochondrial fumarase, was discussed basing on the data concerned with the penetration of metabolites through the inner mitochondrial membrane.  相似文献   

18.
Treatment of isolated human erythrocyte membranes with Triton X-100 at ionic strength ?0.04 preferentially released all the glycerolipid and glycoprotein species. At low ionic strength, certain nonglycosylated polypeptides were also selectively solubilized. The liberated polypeptides were free of lipids, but some behaved as if associated into specific oligomeric complexes. Each detergent-insoluble ghost residue appeared by electron microscopy to be a filamentous reticulum with adherent lipoid sheets and vesicles. The residues contained most of the membrane sphingolipids and the nonglycosylated proteins. The polypeptide elution profile obtained with nonionic detergents is therefore nearly reciprocal to that previously seen with a variety of agents which perturb proteins. These data afford further evidence that the externally-oriented glycoproteins penetrate the membrane core where they are anchored hydrophobically, whereas the nonglycosylated polypeptides are, in general, bound by polar associations at the inner membrane surface. The filamentous meshwork of inner surface polypeptides may constitute a discrete, self-associated continuum which provides rather than derives structural support from the membrance.  相似文献   

19.
Most of human platelet phosphatidylinositol (PI) kinase activity (approx. 80%) was associated with the membrane fraction and its majority was released by the extraction with Triton X-100 after KCl treatment. Two major activity peaks (mPIK-I and mPIK-III) were obtained by Mono Q column chromatography. They were distinct from each other with regard to Mr (76,000 and 80,000 as determined by gel-filtration chromatography), apparent Km values for ATP, effect of arachidonic acid and phosphatidylserine and detergent requirement. Triton X-100 inhibited the activity of mPIK-I but rather weakly enhanced the mPIK-III activity, and sodium cholate remarkably inhibited both mPIK-I and mPIK-III activities. Their products were identified to be phosphatidylinositol 4-phosphate. On the other hand, about 20% of PI kinase activity was recovered from the cytosolic fraction and two activity peaks (cPIK-I and cPIK-II) were resolved on Mono Q column chromatography. There were no significant differences in biochemical properties between cPIK-I and cPIK-II. Both of them had Mr approx. 550,000 as determined by gel-filtration chromatography and were activated by sodium cholate to a greater extent than by Triton X-100. The results suggest that the major PI kinases (mPIK-I and mPIK-III) are PI 4-kinase and mPIK-I is distinct from PI 4-kinases in other sources especially with regard to the effect of Triton X-100.  相似文献   

20.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts. Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium. Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Triton X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations. It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号