首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have utilized fura-2 and a Ca2+ surrogate, Mn2+, to assess the mechanism of Ca2+ entry involved in the refill of the internal agonist-sensitive Ca2+ pool in parotid acini. Both the muscarinic agonist, carbachol, and the alpha-adrenergic agonist, epinephrine, stimulate Mn2+ entry into dispersed parotid acini, which is detected as an augmentation in fura-2 fluorescence quench rate. The rate of Mn2+ entry into parotid acini, depleted of internal agonist-sensitive Ca2+ pools by prolonged carbachol stimulation in a nominally Ca2(+)-free medium, is not significantly changed by the addition of the muscarinic antagonist, atropine, but is significantly attenuated when these internal pools are allowed to either partially or totally reload with Ca2+. Also, we provide evidence which suggests that under conditions which promote refill, Mn2+ appears to directly enter the cytosol from the extracellular medium and is not accumulated into an internal Ca2+ pool either directly from the medium or via a cytosolic route. Thus, we suggest that during refill, Ca2+ enters into the cytosol prior to its recruitment into the internal agonist-sensitive Ca2+ pool and in turn, the magnitude of this entry is modulated by the refill status of this pool.  相似文献   

2.
This study examines the effect of membrane potential on divalent cation entry in dispersed parotid acini following stimulation by the muscarinic agonist, carbachol, and during refill of the agonist-sensitive internal Ca2+ pool. Depolarizing conditions (addition of gramicidin to cells in Na(+)-containing medium or incubation of cells in medium with elevated [K+]) prevent carbachol-stimulated hyperpolarization of acini and also inhibit carbachol activation of Ca2+ and Mn2+ entry into these cells. Conditions promoting hyperpolarization (cells in medium with Na+ or with N-methyl-D-glucamine instead of Na+) enhance carbachol stimulation of divalent cation entry. Intracellular Ca2+ release (initial increase in [Ca2+]i) does not appear to be affected by these manipulations. Mn2+ entry into resting and internal Ca2+ pool-depleted cells (10-min carbachol stimulation in a Ca(2+)-free medium) is similarly affected by membrane potential modulations, and refill of the internal pool by Ca2+ is inhibited by depolarization. The inhibitory effects of depolarization on divalent cation entry can be overcome by increasing extracellular [Ca2+] or [Mn2+]. These data demonstrate that the modulation of Ca2+ entry into parotid acini by membrane potential is most likely due to effects on the electrochemical gradient (Em-ECa) for Ca2+ entry.  相似文献   

3.
The effects of isoproterenol (ISO), a beta-adrenoceptor agonist, on cytosolic free Ca2+ ([Ca2+]i) in rat parotid acinar cells were examined using the fluorescent Ca2(+)-indicator fura-2. At concentrations up to 1 mM, ISO caused a rapid increase in [Ca2+]i in a dose-dependent manner, while addition of 1 microM ISO, which evokes the maximum amylase secretion, had only a slight effect on [Ca2+]i. There was no such increase in [Ca2+]i with the addition (2 mM) of 8-bromo-cyclic AMP, a permeant cyclic AMP analogue. The alpha-adrenoceptor antagonist phentolamine blocked the ISO-induced [Ca2+]i increase better than the beta-adrenoceptor antagonist, propranol, and the muscarinic receptor antagonist, atropine. The IC50 value (the concentration which reduces the ISO-induced increase in [Ca2+]i by 50%) of phentolamine was estimated to be 7.6 nM, for propranolol 13.2 microM and for atropine 3.5 microM. The difference in potency between the three antagonists was similar to the difference in blocking the [Ca2+]i increase induced by phenylephrine, an alpha-adrenoceptor agonist. These results suggest that the Ca2(+)-mobilization in response to high concentrations of ISO results from an activation of alpha-adrenoceptors rather than beta-adrenoceptors.  相似文献   

4.
The present studies were performed to determine the role of cyclic GMP in regulating agonist mediated calcium entry in the pancreatic acinar cell. In guinea pig-dispersed pancreatic acini the findings demonstrated that carbachol stimulated a transient 20-40-fold rise in cellular cyclic GMP followed by a sustained 3-4-fold rise in cellular cyclic GMP. The guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), caused a dose-dependent inhibition of carbachol-stimulated increases in cellular cyclic GMP both during the initial transient large increase in cyclic GMP and the sustained increase in cyclic GMP. LY83583 also inhibited cellular Ca2+ influx during carbachol stimulation and reloading of the agonist-sensitive pool of Ca2+ at the termination of carbachol stimulation with atropine. The effect of the inhibition on reloading of the agonist-sensitive pool was secondary to its effects on the plasma membrane C2+ entry. The addition of dibutyryl cyclic GMP to LY83583-treated acini restored Ca2+ influx across the plasma membrane. Nitroprusside increased both cellular cyclic GMP and the rate of Ca2+ influx. During periods when plasma membrane Ca2+ entry was activated, cellular cyclic GMP levels were increased. These results suggest that agonist-induced increases in cellular cyclic GMP are necessary and sufficient to mediate the effects of the agonist on the plasma membrane Ca2+ entry mechanism.  相似文献   

5.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels.  相似文献   

6.
In isolated cells from the avian supra-orbital nasal gland, used as a model for exocrine ion secretion, addition of NaF (2-15 mM) produced a slow Al3(+)-enhanced increase in intracellular Ca2+ concn. ([Ca2+]i), resulting in a more than 2-fold sustained elevation in [Ca2+]i. Simultaneously, cellular Ins(1,4,5)P3 contents became markedly elevated, suggesting an AlF4- activation of a phospholipase C-specific G-protein. Subsequent addition of the muscarinic agonist carbachol failed to produce any further sustained increase in [Ca2+]i, indicating that the AlF4(-)-induced increase in [Ca2+]i involves a Ca2(+)-entry pathway identical with that activated by carbachol. In low-Ca2+ media (extracellular [Ca2+] = 0.04 mM) no such increase in [Ca2+]i, either sustained or transient, is seen, although cellular Ins(1,4,5)P3 levels were markedly elevated. Despite the failure to observe any change in [Ca2+]i in the low-Ca2+ medium, estimation of the size of the agonist-sensitive Ca2+ stores (determined as the magnitude of the transient change in [Ca2+]i induced by carbachol) revealed that these are progressively emptied by the action of AlF4-. However, the onset of this emptying showed an initial lag period of at least 2 min (with 5 mM-NaF plus 10 microM-AlCl3). In marked contrast, determinations of the magnitude of the Ca2(+)-entry pathway under identical conditions showed that this was significantly activated after as little as 1 min of AlF4- treatment. This suggests that, under these conditions, activation of Ca2+ entry in these cells preceded the release of Ca2+ from agonist-sensitive stores, contradicting current models in which the receptor-enhanced entry of extracellular Ca2+ is entirely dependent on, and subsequent to, the prior release of Ca2+ from the intracellular stores.  相似文献   

7.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

8.
Depletion of agonist-sensitive Ca2+ stores results in activation of capacitative Ca2+ entry (CCE) in endothelial cells. The proportion of Ca2+ stores contributing to the regulation of CCE is unknown. In fura-2/am loaded single endothelial cells freshly isolated from bovine left circumflex coronary arteries, we investigated whether a resting period in a Ca(2+)-free environment results in emptying of bradykinin-sensitive Ca2+ stores (BsS) and activation of CCE. In a Ca(2+)-free environment, depletion of BsS occurred in a time-dependent manner (59% after 10 min in Ca(2+)-free solution). This effect was prevented by inhibition of the Na(+)-Ca2+ exchange but not by a blockade of ryanodine-sensitive Ca2+ release (RsCR). In contrast to BsS, mitochondrial Ca2+ content remained unchanged in the Ca(2+)-free environment. Remarkably, activity of CCE (monitored as Mn2+ influx) did not increase after depletion of BsS in the Ca(2+)-free environment. In contrast to Mn2+ influx, the effect of re-addition of Ca2+ to elevate bulk Ca2+ concentration ([Ca2+]b) decreased with the time the cells rested in Ca(2+)-free buffer. This decrease was prevented by an inhibition of RsCR. In low Na+ conditions the effect of Ca2+ on [Ca2+]b was reduced while it did not change the time the cells rested in Ca(2+)-free solution. After a 2 min period in low Na+ conditions, ryanodine-induced Ca2+ extrusion was markedly diminished. Inhibition of RsCR re-established the effect of Ca2+ on [Ca2+]b in low Na+ conditions. Collapsing subplasmalemmal Ca2+ stores with nocodazole, increased the effect of Ca2+ on [Ca2+]b. In nocodazole-treated cells, the effect of Ca2+ on [Ca2+]b was not reduced in Ca(2+)-free environment. These data indicate that activation of CCE is not associated with the agonist-sensitive Ca2+ pools that deplete rapidly in a Ca(2+)-free environment. Subplasmalemmal ryanodine-sensitive Ca2+ stores (RsS) are emptied in Ca(2+)-free/low Na+ solution and re-sequester Ca2+ which enters the cells prior an increase in [Ca2+]b occurs. Thus, in endothelial cells there are differences in the functions of various subplasmalemmal Ca2+ stores (i.e. BsS and RsS), which include either activation of CCE or regulation of subplasmalemmal Ca2+.  相似文献   

9.
Previous studies demonstrated that Ca2+ ionophores augment the pancreatic enzyme secretion caused by phorbol esters. The present study was performed to determine the nature of the cellular Ca2+ effects responsible for the augmentation. Relatively low concentrations (0.3-1.0 microM) of the nonfluorescent Ca2+ ionophore, 4-bromo-A23187 (Br-A23187), did not measurably increase free cytosolic Ca2+ ([Ca2+]i) and caused little or no enzyme release from guinea pig pancreatic acini. However, these concentrations of Br-A23187 augmented the amylase release caused by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). This augmentation occurred in the absence of extracellular Ca2+ as long as the intracellular agonist-sensitive pool contained Ca2+. Greater concentrations of Br-A23187 (3-10 microM) alone caused transient increases in [Ca2+]i and transient increases in amylase release. Although not resulting in an increase in [Ca2+]i, the low concentrations of Br-A23187 caused release of Ca2+ from the intracellular agonist-sensitive pool. These results suggest that Ca2+ mediates enzyme release by two distinct mechanisms in the pancreatic acinar cell. First, an increase in [Ca2+]i alone mediates enzyme release. Second, Ca2+ release from the agonist-sensitive pool not resulting in a measurable increase in [Ca2+]i augments enzyme release stimulated by a phorbol ester. The second effect of Ca2+ may be due to a small localized change in cell Ca2+ or an induction of cytosolic Ca2+ oscillations.  相似文献   

10.
Microspectrofluorometry of fura-2 was utilized to monitor [Ca2+]i in single acinar cells stimulated with a cholinergic agonist and cholecystokinin. A similar amplitude of agonist induced Ca mobilization between single cell and populational approaches was observed. New findings in single cells not observable in populations of cells include: 1) the maintenance of a sustained elevation in [Ca2+]i above basal levels throughout agonist application, 2) the reloading of the agonist-sensitive Ca pool only following removal of the agonist and 3) the presence of oscillations of [Ca2+]i in response to agonist application which is enhanced at lower agonist concentrations.  相似文献   

11.
The present studies were performed in order to measure the effects of cyclic GMP (cGMP) on the regulation of free cytosolic calcium [( Ca2+]i) in the pancreatic acinar cell. In guinea pig dispersed pancreatic acini the findings demonstrated that the Ca2+ ionophore, Br A23187, caused a sustained increase in [Ca2+]i in the presence of 3 mM CaCl2 in the media and a transient 20 fold rise in cellular cGMP followed by a sustained 3-4 fold rise in cellular cGMP. Increasing cellular cGMP with nitroprusside, hydroxylamine or dibutyryl cGMP had no effect on resting [Ca2+]i. However, these agents attenuated the increase in [Ca2+]i resulting from Br A23187-induced Ca2+ influx. Nitroprusside also attenuated the carbachol-induced sustained rise in [Ca2+]i that resulted from Ca2+ influx. The nitroprusside effect on carbachol-stimulated acini occurred without decreasing Ca2+ influx across the plasma membrane or alteration in the mobilization of Ca2+ from the intracellular agonist-sensitive pool. Inhibition of the increase in cellular cGMP caused by Br A23187 by the guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), resulted in augmentation of the increase in [Ca2+]i. This augmentation was reversed with dibutyryl cGMP. These results indicated that cGMP regulated [Ca2+]i in the pancreatic acinar cell. The mechanism involves the removal of Ca2+ from the cytoplasm.  相似文献   

12.
The secretion of catecholamines and ATP induced by cholinergic agonists and its dependence on extracellular Ca2+ were studied in cultured porcine adrenal chromaffin cells. Both nicotine and methacholine (a selective muscarinic agonist) induced secretion and increases in cytosolic free Ca2+ concentration ([Ca2+]in), although the activation of nicotinic receptors produced responses that were larger than those produced by activation of muscarinic receptors. The secretion and the increase in [Ca2+]in evoked by nicotine were completely dependent on extracellular Ca2+ and were blocked by prior depolarization of the cells with high extracellular K+ levels. In addition, nicotine induced significant 45Ca2+ influx. In contrast, the secretion and the increase in [Ca2+]in evoked by methacholine were partially dependent on extracellular Ca2+; methacholine also induced 45Ca2+ influx. Prior depolarization of the cells with high extracellular K+ levels did not block methacholine-induced secretion. In general, nicotinic responses were mediated by Ca2+ influx through voltage-dependent pathways. In contrast, muscarinic responses were dependent on both Ca2+ influx through an unknown mechanism that could not be inactivated by high K+ concentration-induced depolarization and presumably also intracellular Ca2+ mobilization.  相似文献   

13.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

14.
Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin   总被引:7,自引:0,他引:7  
Human neutrophils, preloaded with the fluorescent probe, Fura-2, were exposed to Ca2+-releasing agents. The monitored traces of fluorescence were transformed by computer to cytosolic Ca2+ concentration ([ Ca2+]i). Due to quenching of Fura-2, the addition of Mn2+ enabled us to compute the cytosolic concentration of total manganese ([Mn]i). The agents used were the novel Ca2+-mobilizing agent, thapsigargin (Tg), the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), and the divalent cation ionophore, A23187. The agents caused transient rises of [Ca2+]i and monotonous rises of [Mn]i, suggesting influx but no efflux of Mn2+. The rise time of [Ca2+]i and the time constants and magnitude of the apparent Mn2+ influx were strongly dependent on the sequence of addition of the agonist and Ca2+. Contrary to FMLP, Tg needed several minutes to exert its full effect on the rise of [Ca2+]i and on the influx of Mn2+, the latter being dependent on two phases, activation and partial inactivation. Pretreatment with phorbol 12-myristate 13-acetate (PMA) inhibited the responses of Tg, FMLP and A23187. For comparison, human red blood cells were tested. Contrary to A23187, Tg did not induce Ca2+ uptake in ATP-depleted red cells but increased the Ca2+ pump flux in intact red cells by 10%. The experimental data and computer simulations of the granulocyte data suggest that time-dependent changes of both passive Ca2+ flux into the cytosol and Ca2+ flux of the plasma membrane pump are involved in the transient [Ca2+]i response.  相似文献   

15.
Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells   总被引:17,自引:0,他引:17  
In order to analyze the factors regulating agonist-stimulated Ca2+ mobilization, cytosolic free [Ca2+] ([Ca2+]i) was measured directly in fura-2-loaded rat parotid acinar cells. Stimulation of muscarinic receptors by carbachol produced a dose-dependent rise in [Ca2+]i. In the presence of external Ca2+, the initial transient rise was followed by a maintained elevation. The maintained elevation is dependent on the presence of external Ca2+. Removal of Ca2+ by addition of EGTA caused a rapid decline in [Ca2+]i back to base line. In the absence of external Ca2+, only an initial transient peak in [Ca2+]i was seen which then declined to base line; the maintained elevation in [Ca2+]i could then be evoked by addition of Ca2+ in the continued presence of carbachol. Muscarinic receptor occupation by carbachol is required to maintain the elevated level of [Ca2+]i; addition of the muscarinic antagonist, atropine, caused [Ca2+]i to decline back to the basal level. The maintained elevation in [Ca2+]i, but not the initial transient peak, can also be blocked by Ni2+ but was unaffected by the organic Ca2+ antagonists. Total substitution of external Na+ with the impermeant cation, N-methyl-D-glucamine, had no effect on either the initial or the maintained response to carbachol; however, total substitution of Na+ with K+ attenuated the maintained response while not affecting the initial peak. Refilling of the intracellular Ca2+ store was also studied and found to take place in the absence of agonist and with no substantial elevation in [Ca2+]i. These experiments also showed that not all of the intracellular vesicular Ca2+ stores can be released by agonists. From these results, we propose a model for the regulation of [Ca2+]i.  相似文献   

16.
Currently, most models describing receptor-activated Ca2+ entry in exocrine cells invoke a pathway for the entry of extracellular Ca2+ directly linking the agonist-sensitive intracellular Ca2+ pools with the plasma membrane. In the avian nasal gland, a model exocrine ion-secreting tissue, we have found that Ca2+ entry during refilling of the intracellular pools following termination of receptor activation (by atropine) occurs via the cytoplasm and not directly into the empty pools. Under appropriate conditions this can be demonstrated as a transient increase in [Ca2+]i (intracellular Ca2+ concn.) seen on restoration of normal extracellular Ca2+ concentrations after atropine to stimulated cells whose intracellular stores have been prevented from refilling by incubation in a low-extracellular-Ca2+ medium. The magnitude of these [Ca2+]i transients decays with time, but with a time course markedly slower than for the corresponding decrease in intracellular Ins(1,4,5)P3. Further experiments have revealed that Ca2+ entry into the cytoplasm during the initial stimulation phase is also direct and not via the intracellular pools. Thus the initial rates of increase in [Ca2+]i during stimulation are always faster in conditions where both Ca2+ entry and Ca2+ release occur (i.e. they are additive). These differences could not be explained by any effects of extracellular Ca2+ on the initial increases in intracellular Ins(1,4,5)P3 after addition of carbachol. These data are therefore inconsistent with the current models in which the rate of Ca2+ entry through the agonist-sensitive pools cannot exceed the rate of Ca2+ release. It appears therefore that Ca2+ entry and Ca2+ release must occur via separate pathways operating in parallel, and not in series as previously predicted.  相似文献   

17.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

18.
Polyunsaturated free fatty acids (PUFAs) of both w-3 and w-6 series, induce a rapid increase of cytosolic free Ca2+ concentration ([Ca2+]i) in a leukemic T-cell line (JURKAT), measured by the fluorescent indicator fura-2. The early increase in [Ca2+]i was transient, falling to a sustained level which returned to base line after 10-15 min. In Ca2+-free medium, PUFAs still caused an early increase in [Ca2+]i but rapidly returned to basal. Depletion of endoplasmic reticular Ca2+ pool by addition of OKT3 (antibodies to CD3 of the T3-antigen receptor complex) to JURKAT cells (in Ca2+-free medium) abolished the PUFAs-mediated [Ca2+]i increase and vice versa. By using saponin-permeabilized JURKAT cells, the intracellular free Ca2+ released by PUFAs was found to be the non-mitochondrial, ATP-dependent sequestered Ca2+ pool which is sensitive to inositol 1,4,5-trisphosphate. However, PUFAs do not induce any apparent increase in inositol phosphates in JURKAT cells. No Ca2+ influx was detected in JURKAT cells when stimulated with PUFAs. A correlation was observed between both the carbon chain length and the number of double bonds with the ability to mobilize cytosolic free [Ca2+]i in the w-3 PUFAs. These results demonstrate that PUFAs stimulate the release of Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in the endoplasmic reticulum of JURKAT cells via a mechanism independent of inositol lipid hydrolysis.  相似文献   

19.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

20.
The mechanisms by which the chemotactic peptide formyl-methyl-leucyl-phenyl-alanine stimulates Ca2+ influx across the plasma membrane were investigated in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Ca2+ influx was determined: (a) from the initial rate of Mn2+ influx, apparent from the quenching of intracellular quin2 or fura-2 fluorescence; (b) from the rate of the elevation of cytosolic free calcium, [Ca2+]i, upon readdition of Ca2+ to cells previously stimulated in the absence of extracellular Ca2+. [3H]Inositol tris-, tetrakis-, and pentakisphosphates were analyzed by a high performance liquid chromatography procedure which was optimized for the separation of inositol tetrakisphosphates, yielding three predominant isomers: inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), inositol 1,4,5,6-tetrakisphosphate, and inositol 1,3,4, 6-tetrakisphosphate. Both the kinetics and agonist dose dependence of Ca2+ influx stimulation correlated closely with the corresponding receptor-mediated variations of [Ca2+]i either in the presence or in the absence of extracellular Ca2+. Of the different inositol phosphates determined in parallel and under the same conditions, accumulation of [3H]Ins(1,3,4,5)P4 correlated best with Ca2+ influx both temporally and in its dose dependence in the presence or in the absence of extracellular Ca2+; inositol 1,3,4-trisphosphate was also correlated but to a lesser extent. Attenuations of [Ca2+]i elevations by decreasing extracellular Ca2+ or by increasing the cytosolic Ca2+ buffering capacity with quin2 led to parallel inhibition of Ca2+ influx and Ins(1,3,4,5)P4 production. In conclusion: 1) activation of Ca2+ influx by formyl-methionyl-leucyl-phenylalanine depends on the elevation of [Ca2+]i, the latter being initiated by Ca2+ mobilization from intracellular stores; 2) Ins(1,3, 4,5)P4 is a strong candidate for maintaining receptor-mediated activation of Ca2+ influx in differentiated HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号