首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Gram-negative fecal bacterial from three longitudinal Hg exposure experiments and from two independent survey collections were examined for their carriage of the mercury resistance (mer) locus. The occurrence of antibiotic resistance was also assessed in both mercury-resistant (Hgr) and mercury-susceptible (Hgs) isolates from the same collections. The longitudinal studies involved exposure of the intestinal flora to Hg released from amalgam "silver" dental restorations in six monkeys. Hgr strains were recovered before the installation of amalgams, and frequently these became the dominant strains while amalgams were installed. Such persistent Hgr strains always carried the same mer locus throughout the experiments. In both the longitudinal and survey collections, certain mer loci were preferentially associated with one genus, whereas other mer loci were recovered from many genera. In general, strains with any mer locus were more likely to be multiresistant than were strains without mer loci; this clustering tendency was also seen for antibiotic resistance genes. However, the association of antibiotic multiresistance with mer loci was not random; regardless of source, certain mer loci occurred in highly multiresistant strains (with as many as seven antibiotic resistances), whereas other mer loci were found in strains without any antibiotic resistance. The majority of highly multiresistant Hgr strains also carried genes characteristic of an integron, a novel genetic element which enables the formation of tandem arrays of antibiotic resistance genes. Hgr strains lacking antibiotic resistance showed no evidence of integron components.  相似文献   

2.
3.
Plasmids, which code for a new type of drug resistance due to the acetylation of streptothricin and belonging to various incompatibility groups (I1, I2, W3, FII, S, X, and N) were identified in gram-negative bacteria. The gene for the acetyltransferase is closely linked to a gene for the streptomycin/spectinomycin adenylyltransferase AAD-3″ on a novel type of a transposon, designated Tn1825. This is related to Tn7.  相似文献   

4.
5.
6.
Nine polymorphic mer loci carried by 185 gram-negative fecal bacterial strains from humans and nonhuman primates are described. The loci were characterized with specific intragenic and intergenic PCR primers to amplify distinct regions covering approximately 80% of the typical gram-negative mer locus. These loci were grouped phylogenetically with respect to each other and with respect to seven previously sequenced mer operons from gram-negative bacteria (the latter designated loci 1, 2, 3, 6, 7, 8, and delta 8 by us here for the purpose of this analysis). Six of the mer loci recovered from primates are similar either to these previously sequenced mer loci or to another locus recently observed in environmental isolates (locus 4), and three are novel (loci 5, 9, and 10). We have observed merC, or a merC-like gene, or merF on the 5' side of merA in all of the loci except that of Tn501 (here designated mer locus 6). The merB gene was observed occasionally, always on the 3' side of merA. Unlike the initial example of a merB-containing mer locus carried by plasmid pDU1358 (locus 8), all the natural primate loci carrying merB also had large deletions of the central region of the operon (and were therefore designated locus delta 8). Four of the loci we describe (loci 2, 5, 9, and 10) have no region of homology to merB from pDU1358 and yet strains carrying them were phenylmercury resistant. Two of these loci (loci 5 and 10) also lacked merD, the putative secondary regulator of operon expression. Phylogenetic comparison of character states derived from PCR product data grouped those loci which have merC into one clade; these are locus 1 (including Tn21), locus 3, and locus 4. The mer loci which lack merC grouped into a second clade: locus 6 (including Tn501) and locus 2. Outlying groups lacked merD or possessed merB. While these mer operons are characterized by considerable polymorphism, our ability to discern coherent clades suggests that recombination is not entirely random and indeed may be focused on the immediate 5' and 3' proximal regions of merA. Our observations confirm and extend the idea that the mer operon is a genetic mosaic and has a predominance of insertions and/or deletions of functional genes immediately before and after the merA gene. chi sites are found in several of the sequenced operons and may be involved in the abundant reassortments we observe for mer genes.  相似文献   

7.
8.
9.
P Barrineau  A O Summers 《Gene》1983,25(2-3):209-221
Transpositional mutagenesis of the mer operon of the IncFII plasmid, R100, has revealed a second, trans-acting positive regulatory function. Mutants in this function do not synthesize any of the three small mer operon peptides and have no inducible Hg(II) uptake activity. This second regulatory function is part of complementation group B and so depends upon the activity of the previously described trans-acting positive regulatory function merR. All mutants in this new function map in the amino-terminal 20 kDal of the Hg(II) reductase, suggesting either that this enzyme is also a regulatory protein or that there is a distinct protein whose reading frame is superimposed on that of the Hg(II) reductase. While we have only seen the five previously described mer operon peptides of 69, 66, 15.1, 14 and 12 (13) kDal encoded in minicells by single-copy plasmids, we have observed two new HgCl2-inducible polypeptides of approx. 20 kDal in minicells carrying a multicopy derivative of the mer operon of R100. Sequence data for the Hg(II) reductase region of the related mer operon of the transposon, Tn501 [Brown, N.L., Ford, S.J., Pridmore, R.D. and Fritzinger, D.C., Biochemistry 22 (1983) 4089-4095], shows a second reading frame very rich in cysteine and arginine which overlaps the amino-terminal 20 kDal of the Hg(II) reductase structural gene. We believe that this reading frame is the structural gene for this new regulatory function and propose the name merC (for control).  相似文献   

10.
The RTX (repeats in toxin) cytolytic toxins represent a family of important virulence factors that have disseminated widely among Gram-negative bacteria. They are characterised by a series of glycine-rich repeat units at the C-terminal end of each protein. They also have other features in common. Secretion from the cell occurs without a periplasmic intermediate by a novel mechanism which involves recognition of a signal sequence at the C-terminus of the toxin by membrane-associated proteins that export the toxin directly to the outside of the cell. The structural gene for each protein encodes an inactive toxin which is modified post-translationally to an active cytotoxic form by another gene product before secretion. The genes for toxin synthesis, activation and secretion are for the most part grouped together on the chromosome and form an operon. The toxins all create pores in the cell membrane of target cells leading to eventual cell lysis and they appear to require Ca2+ for cytotoxic activity. Although the toxins have a similar mode of action, they vary in target cell specificity. Some are cytotoxic for a wide variety of eukaryotic cell types while others exhibit precise target cell specificity and are only active against leukocytes from certain host species. The characteristic glycine-rich repeat units have been identified in other exoproteins besides those with cytotoxic activity and it is likely that the novel secretory mechanism has been harnessed by a variety of pathogens to release important virulence-associated factors from the cell or to locate them on the cell surface.  相似文献   

11.
Four representative species from three genera of gram-negative bacteria that secrete exopolysaccharides acquired resistance to the antibiotic bacitracin by stopping synthesis of the exopolysaccharide. Xanthomonas campestris, Sphingomonas strains S-88 and NW11, and Escherichia coli K-12 secrete xanthan gum, sphingans S-88 and NW11, and colanic acid, respectively. The gumD gene in X. campestris is required to attach glucose-P to C55-isoprenyl phosphate, the first step in the assembly of xanthan. A recombinant plasmid carrying the gumD gene of X. campestris restored polysaccharide synthesis to bacitracin-resistant exopolysaccharide-negative mutants of X. campestris and Sphingomonas strains. Similarly, a newly cloned gene (spsB) from strain S-88 restored xanthan synthesis to the same X. campestris mutants. However, the intergeneric complementation did not extend to mutants of E. coli that were both resistant to bacitracin and nonproducers of colanic acid. The genetic results also suggest mechanisms for assembling the sphingans which have commercial potential as gelling and viscosifying agents.  相似文献   

12.
Abstract Bacteria isolated from the River Mersey were analysed for their tolerance to mercury (HgCl2). About 40% of the population was tolerant to mercury and in 13 of 52 mercury-tolerant isolates tested the mercury resistance (Hg®) was transferred to Escherichia coli in conjugal matings. These 13 isolates represented a range of gram-negative genera and in each case mercury resistance was coded by a conjugative plasmid. These plasmids (75 kb to > 250 kb in size) all expressed mercury resistance of the narrow spectrum variety, volatilised HgCl2 to elemental Hg° vapour and showed some degree of temperature sensitivity of transfer. None expressed resistance to nine different antibiotics. These 13 HgR plasmids were classified by restriction mapping into three distinct groups typified by pMER11, pMER327 and pMER610. The eight pMER610 group plasmids are identical and belong to the IncHI-2 group. Two of the four pMER327 group plasmids are closely related while the other two contain some common restriction fragments. pMER11 is quite distinct from the other groups. These results imply that within this aquatic environment plasmids play an important role in the response of bacteria to contaminating mercury and that there is widespread plasmid transfer and considerable genetic rearrangement.  相似文献   

13.
We report the overexpression, purification, and properties of the regulatory protein, GlnR, for glutamine synthetase synthesis of Bacillus cereus. The protein was found to be a dimer with a molecular weight of approximately 30,000, and its subunit molecular weight was 15,000 in agreement with that (15,025) of deduced amino acid sequence of GlnR. The purified GlnR protein bound specifically to the promoter region of the glnRA operon of B. cereus and Bacillus subtilis. The binding of the GlnR protein to the DNA fragment was enhanced by the presence of glutamine synthetase, the product of glnA, of B. cereus or B. subtilis, although the affinity of the GlnR protein for DNA was not affected in the presence of glutamate, glutamine, Mg2+, Mn2+, or ammonia. These results indicate the existence of an interaction between GlnR and glutamine synthetase, and support the hypothesis that the regulation of glnA expression requires both GlnR protein and glutamine synthetase in Bacillus.  相似文献   

14.
Three unique parathion hydrolases were purified from gram-negative bacterial isolates and characterized. All three purified enzymes had roughly comparable affinities for ethyl parathion and had broad temperature optima at ca. 40 degrees C. The membrane-bound hydrolase of Flavobacterium sp. strain ATCC 27551 was composed of a single subunit of approximately 35,000 daltons (Da) and was inhibited by sulfhydryl reagents such as dithiothreitol (DTT) and by metal salts such as CuCl2. The cytosolic hydrolase of strain B-1 was composed of a single subunit of approximately 43,000 Da and was stimulated by DTT and inhibited by CuCl2. The membrane-bound hydrolase of strain SC was composed of four identical subunits of 67,000 Da and was inhibited by DTT and stimulated by CuCl2. The substrate ranges of the three enzymes also differed, as evidenced by their relative affinities for parathion and the related organophosphate insecticide O-ethyl-O-4-nitrophenyl phenylphosphonothioate (EPN). The B-1 hydrolase displayed equal affinity for both compounds, the Flavobacterium enzyme showed twofold-lower affinity for EPN than for parathion, and the SC hydrolase displayed no activity toward EPN. The range in characteristics of these three enzymes can be exploited in different waste disposal strategies.  相似文献   

15.
A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance.  相似文献   

16.
17.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31?kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5?×?10?9?M; binding site II, 1.2?×?10?8?M; and for the complete promoter/operator region 1?×?10?8?M. The half-life of the MerR-DNA complex was 19.4?min and 18.8?min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1?×?10?7?M.  相似文献   

18.
19.
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.  相似文献   

20.
Distribution of plasmids and genetic determinants of antibiotic resistance was studied in 129 strains of Pseudomonas, Klebsiella, Serratia and Enterobacter isolated from oncological patients. It was shown that 56 isolates contained the plasmids, 9 conjugative plasmids being plasmids with broad bacterial host spectrum. A significant part of the strains contained genes controlling production of APH (3"), type II APH (3'), type I and II DHPS and type type II DHFR. Genetic determinants of tetracycline resistance of classes D and E were detected for the first time in the strains of Klebsiella, Serratia and Pseudomonas aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号