首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Polyamines were found to be associated with microsomes of rat cerebral cortex, the amount of spermine being about four times that of spermidine. Cell sap contained more spermidine than spermine. 2. Both polyamines were able to stimulate the incorporation of [(14)C]valine into microsomes in vitro with a maximum rate equal to 250% of the control. Polyamines stimulated at concentrations close to the amount of spermine and spermidine naturally present in the system. 3. Spermine (0.05mm) was used to study the mechanism of action of polyamines. The increasing of microsome and cell-sap concentration facilitated the action of spermine, but the same process was inhibited by increasing pH5-enzyme concentration. 4. Spermine did not affect the association of [(14)C]valine with tRNA in cell sap, but increased the rate of aminoacyl-tRNA formation in pH5 enzyme preparations. However, this process was not affected in any case when incorporating microsomes were present. 5. It is suggested that microsomes are the main site of action of polyamines.  相似文献   

2.
The effects of natural polyamines on cyclic AMP-mediated stimulation of amino acid transport in isolated rat hepatocytes were analyzed. Despite the fact that polyamines could directly compete with alpha-aminoisobutyric acid (AIB) for uptake, preincubation of hepatocytes with polyamines did not significantly alter basal AIB transport. The stimulatory effect of glucagon or cyclic AMP analogs was differently affected by polyamines, since it was reduced in the presence of spermine and, inversely, potentiated by spermidine, putrescine, and cadaverine. Dose-dependence analysis showed that half maximal and maximal effects occurred with 2-3 and 6-10 mM external concentrations, respectively. None of the polyamine effects could be ascribed to transstimulation or transinhibition of amino acid uptake. The inhibitory effect exerted by spermine correlated its capacity to inhibit [3H]-leucine incorporation into proteins partially. The potentiating effect of the other polyamines did not result from stabilization of newly synthesized carrier proteins. Instead, the increase in Vmax of the high affinity transport component suggested that more carriers became available, presumably because polyamines facilitated their synthesis by interacting directly with one or several steps controlled by cyclic AMP. Polyamines appear to represent a new class of factors capable of modulating the cyclic AMP-mediated stimulation of amino acid transport, in hepatocytes.  相似文献   

3.
Plantlets of Solanum tuberosum L. cv. Sirtema were used to studythe regulation of the long-distance transport of potassium.The effects of polyamines and two plant hormones, abscisic acid(ABA) and benzyladenine (BA), on this process were investigated.Foliar sprays of putrescine or BA increased the transport of(K) 86Rb to the upper part of the plant. In contrast, spermidinetreatment enhanced the translocation into the growing tuber,as did ABA. These specific effects were partially correlatedto the distribution of endogenous polyamines within the plant.Spermidine was the predominant polyamine in the tuber whileputrescine was as abundant as spermidine in the leaves. Thetotal amount of putrescine, spermidine and spermine decreasedwith the physiological age of the leaves and tubers. Moreover,from heat-girdling experiments, it was shown that the polyamine,14C-putrescine, supplied to a leaf, was transported via thephloem. It is suggested that polyamines like phytohormones havea regulatory role in long-distance transport. Key words: Hormone-directed-transport, K, phloem, polyamines, potato, 14C-putrescine transport  相似文献   

4.
Polyamine content in testes of various vertebrates was studied extensively. Putrescine, spermidine and spermine were detected in all the animals examined, although the distribution pattern varied greatly from animal to animal. Cadaverine was detected only in amphibian testes; sym-homospermidine was found not only in testes but also in various other tissues of amphibians and of some reptiles. In the newt testis the concentration of cadaverine was lower than that of any other polyamines in summer, but there was a great increase in cadaverine content from autumn to winter. The testicular content of cadaverine was greater than that of other polyamines in winter. There was a gradual decrease in the cadaverine content in spring. The spermidine and spermine levels, which were rather low in winter, increased in spring and reached a peak in summer when spermatogenesis was active. The testicular concentration of putrescine that was much higher than that of spermidine or spermine throughout the year, increased only a little in summer. There was a significant negative correlation between the cadaverine levels and four other polyamine levels. Exogenous cadaverine decreased the testicular levels of putrescine. Mammalian gonadotropins decreased the cadaverine levels and increased the levels of other polyamines. A partially purified LH fraction from pituitaries of bullfrog, Rana catesbeiana, was also potent in depleting cadaverine of the testes of newts kept at 8 degrees C. These results suggest that testicular cadaverine suppresses the biosynthesis of polyamines, especially spermidine and spermine which are closely associated with spermatogenesis.  相似文献   

5.
Polyamines were identified by high performance liquid chromatography (benzoylation) and by thin layer chromatography (dansylation) in xylem exudates from stems of sunflowers (Helianthus annuus [L.]), mung bean (Vigna radiata [L.] Wilczek), grapevine (Vitis vinifera [L.] cv Grenache), and orange (Citrus sinensis [L.] Osbeck, cv Valencia), as well as in phloem sap (using elution into EDTA) of sunflower and mung bean plants. Putrescine was the major polyamine detected, ranging in concentrations of 150 to 9200 picomoles per milliliter exudate, whereas only trace amounts of spermine were detected. High amounts of putrescine and spermidine were found in EDTA eluates (possibly phloem sap) as compared with elution into water. Concentrations of putrescine and spermidine in xylem exudates were related to the physiological conditions of the plants prior to exudate collection. More putrescine was found in exudates of older than in younger sunflower plants, and salt stress applied to sunflower plants resulted in a higher concentration of putrescine and spermidine in the exudate. The presence and abundance of putrescine and spermidine in xylem and phloem exudates indicate that polyamines may be translocated in plants. This long-distance translocation further supports the hypothesis that polyamines have a regulatory role in plant growth and response to stress.  相似文献   

6.
Polyamines (cadaverine, putrescine, spermidine, spermine) have been shown to be present in all prokaryotic and eukaryotic cells, and proposed to be important anti-inflammatory agents. Some polyamines at high concentrations are known to scavenge superoxide radicals in vitro. We have investigated the possible antioxidant properties of polyamines and found that polyamines, e.g., cadaverine, putrescine, spermidine and spermine do not scavenge superoxide radicals at 0.5, 1.0 and 2 mM concentrations. However, polyamines were found to be potent scavengers of hydroxyl radicals. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic technique. Spermine, spermidine, putrescine and cadaverine inhibited DMPO-OH adduct formation in a dose dependent manner, and at 1.5 mM concentration virtually eliminated the adduct formation. The *OH-dependent TBA reactive product of deoxyribose was also inhibited by polyamines in a dose-dependent manner. Polyamines were also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxy 1 (TEMPO) formation. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers, and was detected as TEMP-1O2 adduct by EPR spectroscopy. Spermine or spermidine inhibited the 1O2-dependent TEMPO formation maximally to 50%, whereas putrescine or cadaverine inhibited this reaction only up to 15%, when used at 0.5 and 1 mM concentrations. These results suggest that polyamines are powerful. OH scavengers, and spermine or spermidine also can quench singlet oxygen at higher concentrations.  相似文献   

7.
Abstract— The clearance of the polyamines spermidine and spermine from cerebrospinal fluid was investigated in the rabbit by ventriculocisternal perfusion. Clearance involved both saturable and nonsaturable uptake processes. The saturable component was a high affinity system with an affinity constant of 21 μ m for spermidine and 24 μ m for spermine. The clearance of spermidine was reduced by the presence of spermine and vice-versa. Other polyamine congeners also reduced spermidine and spermine clearance and it is suggested that the two polyamines share the same carrier. Evidence for concentrative uptake of polyamines into choroid plexus is presented and it is suggested that an active system may also transport polyamines into brain tissue. At high perfusion concentrations simple diffusion may also take place.  相似文献   

8.
Tomosugi M  Ichihara K  Saito K 《Planta》2006,223(2):349-358
The major fatty acid component of castor (Ricinus communis L.) oil is ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid), and unsaturated hydroxy acid accounts for >85% of the total fatty acids in triacylglycerol (TAG). TAG had a higher ricinoleate content at position 2 than at positions 1 and 3. Although lysophosphatidic acid (LPA) acyltransferase (EC 2.3.1.51), which catalyzes acylation of LPA at position 2, was expected to utilize ricinoleoyl-CoA preferentially over other fatty acyl-CoAs, no activity was found for ricinoleoyl-CoA in vitro at concentrations at which other unsaturated acyl-CoAs were incorporated rapidly. However, activity for ricinoleoyl-CoA appeared with addition of polyamines (putrescine, spermidine, and spermine), while polyamines decreased the rates of incorporation of other acyl-CoAs into position 2. The order of effect of polyamines on LPA acyltransferase activity was spermine > spermidine >> putrescine. At concentrations of spermine and spermidine of >0.1 mM, ricinoleoyl-CoA served as an effective substrate for LPA acyltransferase reaction. The concentrations of spermine and spermidine in the developing seeds were estimated at ∼0.09 and ∼0.63 mM, respectively. These stimulatory effects for incorporation of ricinoleate were specific to polyamines, but basic amino acids were ineffective as cations. In contrast, in microsomes from safflower seeds that do not contain ricinoleic acid, spermine and spermidine stimulated the LPA acyltransferase reaction for all acyl-CoAs tested, including ricinoleoyl-CoA. Although the fatty acid composition of TAG depends on both acyl-CoA composition in the cell and substrate specificity of acyltransferases, castor bean polyamines are crucial for incorporation of ricinoleate into position 2 of LPA. Polyamines are essential for synthesis of 2-ricinoleoyl phosphatidic acid in developing castor seeds.  相似文献   

9.
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997  相似文献   

10.
Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

11.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, only labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine, gamma-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and delta-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, gamma-amino-n-butyric acid, 1,3-diaminopropane, beta-alanine and spermine. After the injections with bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, beta-alanine, 2-hydroxyputrescine and possibly gamma-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

12.
The polyamines putrescine, cadaverine, spermidine and spermine reduced the amount of ethylene produced by senescing petals of Tradescantia but they did not prevent anthocyanin leakage from these same petals. These polyamines also inhibited auxin-mediated ethylene production by etiolated soybean hypocotyls to less than 7 % of the control. The basic amino acids lysine and histidine reduced the amount of auxin-induced ethylene produced by soybean hypocotyls by ca 50 %. In the hypocotyls, methionine was unable to overcome the inhibition caused by the polyamines. The polyamines spermidine and spermine inhibited ethylene production induced by the application of 1-aminocyclopropane-1-carboxylic acid and they also reduced the endogenous content of this amino acid in the treated tissues.  相似文献   

13.

The behavior of endogenous polyamines was studied in somatic embryos and zygotic embryos of Habanero pepper (Capsicum chinense). In the first part of the work, the polyamine content was evaluated in both types of embryos (somatic and zygotic). As a result, in addition to the common polyamines (putrescine, spermidine and spermine), it was also possible to detect cadaverine, a polyamine rarely found in plants. In general, all the polyamines were found to be more abundant in somatic embryos than in zygotic embryos, with significantly higher contents of putrescine and cadaverine. Subsequently, the content of putrescine, spermidine, spermine and cadaverine, in their different forms (free, bound and conjugated) was determined in somatic embryos which were cultured in non-ventilated and ventilated containers. Detection of polyamines was carried out at 28 and 42 days of culture by the HPLC method. The ethylene content was monitored during the process in both culture conditions (ventilated and non-ventilated). As a result of the analysis, cadaverine was always found present, indicating that it is a common polyamine in the species. Ethylene was detected in containers without ventilation throughout the culture, except during replenishment of the culture medium (R1, R2 and R3). The behavior pattern of each polyamine, analyzed under different culture conditions (ventilated and non-ventilated) and at different moments of culture (28 and 42 days of culture), show that the polyamines are not only involved in morphogenic processes in plants; polyamines are also significantly affected by the surrounding environment. However, the most novel result, presented for the first time in this paper, is that cadaverine is found to be a common polyamine in C. chinense since it is present in both zygotic embryos and somatic embryos.

  相似文献   

14.
Importance of higher polyamines, spermidine, and spermine, in relation to the mechanism and adaptation to combat abiotic stress has been well established in cereals. Owing to their polycationic nature at physiological pH, polyamines bind strongly to negative charges in cellular components such as nucleic acids, various proteins, and phospholipids. To study the physiological role of polyamine during salinity stress, phosphorylation study was carried out in cytosolic soluble protein fraction isolated from the roots of salt tolerant (Nonabokra) and salt sensitive (M-1-48) rice cultivars treated with none (control), NaCl (150 mM, 16 h), spermidine (1 mM, 16 h) or with abscisic acid (100 μM, 16 h). A calcium independent auto regulatory 42 kDa protein kinase was found to phosphorylate myelin basic protein and casein but not histone. Interestingly, this was the only protein to be phosphorylated in root cytosolic fraction during NaCl/abscisic acid/spermidine treatment indicating its importance in salinity mediated signal transduction. This is the first report of polyamine as well as abscisic acid induced protein kinase activity in rice root in response to salinity stress.  相似文献   

15.
Polyamines and environmental challenges: recent development   总被引:73,自引:0,他引:73  
In this review, we will try to summarize some recent data concerning the changes in polyamine metabolism (biosynthesis, catabolism and regulation) in higher plants subjected to a wide array of environmental stress conditions and to describe and discuss some of the new advances concerning the different proposed mechanisms of polyamine action implicated in plant response to environmental challenges. All the data support the view that putrescine and derived polyamines (spermidine, spermine, long-chained polyamides) may have several functions during environmental challenges. In several systems (except during hypoxia, and chilling tolerance of wheat and rice) an induction of polyamines (spermidine, spermine) not putrescine accumulation, may confer a stress tolerance. In several cases stress tolerance is associated with the production of conjugated and bound polyamines and stimulation of polyamine oxidation. In several environmental challenges (osmotic-stress, salinity, hypoxia, environmental pollutants) recent results indicate that both arginine decarboxylase and ornithine decarboxylase are required for the synthesis of putrescine and polyamines (spermidine and spermine). Under osmotic and salt-stresses a production of cadaverine is observed in plants. A new study demonstrates that under salt-stress putrescine catabolism (via diamine oxidase) can contribute to proline (a compatible osmolyte) accumulation.  相似文献   

16.
Abstract

Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

17.
Berberine production in cell suspension cultures of Thalictrum minus L. var. hypoleucum Miq. was significantly enhanced by administration of spermidine, whereas other polyamines such as cadaverine, putrescine and spermine were ineffective. The results of experiments indicated that spermidine causes an increase of ethylene generation which is closely associated with activation of berberine biosynthesis.  相似文献   

18.
19.
Naturally occurring polyamines putrescine, cadaverine, spermidine, and spermine are analogues of the species-specific long-chain polyamines found in diatoms. Scanning electron microscopy and energy-dispersive spectroscopy show that the reactions of a soluble Ti(IV) precursor with spermidine and spermine, but not putrescine or cadaverine, produce nanostructured irregular polyhedra of titanium oxide. At 25 degrees C, the average size of the particles formed with spermidine is 400 +/- 150 nm, and with spermine, 140 +/- 50 nm. Although the particles are X-ray amorphous at room temperature, annealing studies reveal that the particles adopt crystallinity at higher temperatures characteristic of anatase (TiO2). The major portion of the biopolyamines is not coprecipitated with the solid but is left in solution. Kinetic measurements reveal an initial fast step followed by two slower phases of reaction. At 25 degrees C, k(1obs) and k(2obs) for the reaction with spermidine are 5 x 10(-3) s(-1) and 3.6 x 10(-4) s(-1), respectively, and for spermine, 4.8 x 10(-3) s(-1) and 4.2 x 10(-4) s(-1), respectively. Taken together, the data suggest spermidine and spermine are biocatalysts for the precipitation of nanostructured titanium oxide.  相似文献   

20.

Background

The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results.

Methodology/Principal Findings

Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines.

Conclusion/Significance

From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号