首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Food-derived peptides have been reported to yield a variety of health promoting activities. Pyroglutamyl peptides are contained in the wheat gluten hydrolysate. In the present study, we investigated the effect of pyroglutamyl dipeptides on the lipopolysaccharide (LPS)-induced inflammation in macrophages.

Main methods

RAW 264.7 macrophages were treated with LPS and various concentrations of pyroglutamyl-leucine (pyroGlu-Leu), -valine (pyroGlu-Val), -methionine (pyroGlu-Met), and -phenylalanine (pyroGlu-Phe). Cell viability/proliferation and various inflammatory parameters were measured by the established methods including ELISA and western blotting. The binding of fluorescein isothiocyanate-labeled LPS to RAW 264.7 cells was also measured fluorescently.

Key findings

All the tested dipeptides significantly inhibited the secretion of nitric oxide, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 from LPS-stimulated RAW 264.7 macrophages. Above all, pyroGlu-Leu inhibited the secretion of all these inflammatory mediators even at the lowest dose (200 μg/ml). PyroGlu-Leu dose-dependently suppressed IκBα degradation and MAPK (JNK, ERK, and p38) phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, it did not affect the binding of LPS to the cell surface.

Significance

Our results indicated that pyroGlu-Leu inhibits LPS-induced inflammatory response via the blocking of NF-κB and MAPK pathways in RAW 264.7 macrophages.  相似文献   

2.
目的:探讨黄芪甲苷对马兜铃酸诱导的RAW264.7细胞向M1型极化的影响,并初步探索其可能的作用机制。方法:分别采用马兜铃酸和脂多糖(LPS)刺激RAW264.7细胞24 h,伴或不伴黄芪甲苷进行药物干预处理。采用细胞计数检测试剂盒-8(CCK 8)检测细胞活性变化,流式细胞仪检测巨噬细胞分型,酶联免疫吸附试验(ELISA)检测细胞上清液中白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)的分泌量。反转录实时定量PCR(RT-qPCR)技术检测RAW264.7细胞IL-6、TNF-αmRNA表达。蛋白免疫印迹法(Western blot)检测RAW264.7细胞p-p38和p38 MAPK蛋白表达水平。结果:CCK8结果提示黄芪甲苷在5~50μg/mL浓度范围对RAW264.7巨噬细胞无明显毒性,本研究选取10μg/mL作为实验干预浓度。黄芪甲苷能够显著改善马兜铃酸诱导的巨噬细胞活性(P<0.05),同时减少IL-6和TNF-α的分泌水平和mRNA表达水平(均P<0.05),抑制马兜铃酸和LPS诱导的M1/M2巨噬细胞比例(P<0.05)。黄芪甲苷可部分抑制马兜铃酸诱导的巨噬细胞p38 MAPK磷酸化水平(P<0.05)。结论:黄芪甲苷可减少巨噬细胞M1型极化,降低炎症因子IL-6和TNF-α水平,减少巨噬细胞的活性,从而起到减缓马兜铃酸肾损害的作用,其作用机制可能与部分抑制p38 MAPK信号活性有关。  相似文献   

3.
CME‐1, a novel water‐soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti‐oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME‐1, namely anti‐inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)‐stimulated RAW 264.7 cells with CME‐1 concentration‐dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME‐1‐treated RAW 264.7 cells, LPS‐induced IκBα degradation and the phosphorylation of p65, Akt and mitogen‐activated protein kinases (MAPKs), including extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)‐specific inhibitor, significantly reversed the CME‐1‐suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up‐regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME‐1‐induced PP2A activation and its subsequent suppression of LPS‐activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS‐induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME‐1. Furthermore, the role of ceramide signalling pathway and anti‐oxidative property were also demonstrated in CME‐1‐mediated inhibition of LPS‐activated primary peritoneal macrophages. In conclusion, CME‐1 suppressed iNOS expression by up‐regulating ceramide‐induced PP2A activation and reducing ROS production in LPS‐stimulated macrophages. CME‐1 is a potential therapeutic agent for treating inflammatory diseases.  相似文献   

4.
Exposure of macrophages to bacterial lipopolysaccharide (LPS) induces release of proinflammatory cytokines that play crucial roles in chronic inflammation. Glucosamine has reported to possess anti-inflammatory properties and currently is the oral supplement of choice for the management of inflammation related complications including osteoarthritis. In this study, quaternized amino glucosamine (QAGlc), a newly synthesized cationic glucosamine (Glc) derivative was found to inhibit LPS-stimulated production of IL-1beta, IL-6, TNF-alpha, and PGE(2) in RAW264.7, mouse macrophages more potently than its starting material Glc. Since production of cytokines is regulated mainly via activation of NF-kappaB and regulation of mitogen-activated protein kinases (MAPKs), we examined if QAGlc could be responsible for the suppression of NF-kappaB pathway and MAPKs. We used reporter gene assay and Western blotting to examine the effects of QAGlc on activation and translocation of NF-kappaB. Further, QAGlc-mediated inhibition of NF-kappaB was accompanied with a suppression of its translocation. Apparently, QAGlc was shown to attenuate LPS-induced activation of p38 MAPK and JNK in RAW264.7 cells suggesting that inhibition of MAPK-mediated LPS signaling also contribute to suppression of cytokine production following stimulation of macrophages with LPS.  相似文献   

5.
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.  相似文献   

6.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

7.
Bacterial lipopolysaccharide (LPS) induces interferon (IFN) secretion and an antiviral state in murine peritoneal macrophages (PM). These cells secrete predominantly IFN-beta, as shown by neutralization assays with monoclonal antibodies. Secretion of IFN-beta is also induced in PM by IFN-gamma. LPS and IFN-gamma synergistically stimulated PM to produce IFN in amounts almost comparable to those induced by infection with Newcastle disease virus. Low levels of IFN-beta mRNA can be detected in freshly harvested PM by hybridization assays. The accumulation of this mRNA is markedly increased in PM treated with LPS or IFN-gamma, and it is further enhanced in the presence of the inhibitor of protein synthesis, cycloheximide. Similar studies were carried out on the RAW 264.7 line of transformed macrophages. These cells are induced to secrete IFN-beta by LPS but not by IFN-gamma, suggesting that this cytokine may elicit such specific response only in PM. IFN-beta mRNA is undetectable in untreated RAW 264.7 cells, and accumulation of this mRNA is induced by LPS but not by IFN-gamma. The secretion of IFN induced by these agents in PM and by LPS in RAW 264.7 cells and the corresponding accumulation of IFN-beta mRNA are blocked by an inhibitor of protein kinase C, staurosporine. The activity of this kinase is apparently necessary to stimulate accumulation of IFN-beta mRNA. The induction of IFN-beta by IFN-gamma appears to be a characteristic response of PM and may be at least in part responsible for the resistance of these cells to viral infections.  相似文献   

8.
Macrophages secrete endoplasmic reticulum aminopeptidase 1 (ERAP1) in response to lipopolysaccharide (LPS) and interferon (IFN)-γ to enhance their phagocytic and nitric oxide (NO) synthetic activities. In this study, we found that a subset of secreted ERAP1 bound to exosomes released from LPS/IFN-γ-treated murine RAW264.7 macrophages compared to untreated cells. ERAP1-bound exosomes enhanced phagocytic and NO synthetic activities of macrophages more efficiently than free ERAP1 and exosomes derived from untreated cells. Deletion of the exon 10 coding sequence in ERAP1 gene resulted in loss of binding to exosomes. By comparing the activities of exosomes derived from wild-type and ERAP1 gene-deficient RAW264.7 cells, we observed that ERAP1 contributed to the exosome-dependent phagocytosis and NO synthesis of the cells. Upon stimulation of RAW264.7 cells with LPS/IFN-γ, TNF-α, IFN-γ, and CCL3 were also associated with the released exosomes. Analyses of cytokine function revealed that while CCL3 in the exosomes was crucial to the phagocytic activity of RAW264.7 cells, TNF-α and IFN-γ primarily contributed to the enhancement of NO synthesis. These results suggest that treatment with LPS/IFN-γ alters the physicochemical properties of exosomes released from macrophages in order to facilitate association with ERAP1 and several cytokines/chemokines. This leads to exosome-mediated enhancement of macrophage functions. It is possible that packaging effector molecules into exosomes upon inflammatory stimuli, facilitates the exertion of effective pathophysiological functions on macrophages. Our data provide the first evidence that ERAP1 associated with exosomes plays important roles in inflammatory processes via activation of macrophages.  相似文献   

9.
This study explored the effects of low-dose and high-dose irradiation on inflammatory macrophage cells, specifically inflammatory cytokine secretion and nitric oxide (NO) production after irradiation. To elucidate the effect of irradiation on active and inactive macrophages, we exposed LPS-treated or untreated murine monocyte/macrophage RAW 264.7 cell lines to low-dose to high-dose radiation (0.01–10 Gy). We analyzed the effects of irradiation on RAW 264.7 cell proliferation by MTT assays and analyzed cytokine secretion and NO production related to inflammation by ELISA assays. Low-to-high doses of radiation did not significantly affect the proliferation of LPS-treated or untreated RAW 264.7 cells. Pro-inflammatory cytokine IL-1ß was generally increased in RAW 264.7 cells at 3 days after radiation. Especially, IL-1ß was significantly increased in only high dose-irradiation (2 and 10 Gy irradiation) groups in LPS-untreated RAW 264.7 cells but increased in both low and high dose-irradiation groups (0.01–10 Gy) in LPS-treated RAW 264.7 cells at 3 days after irradiation. Whereas, the expression of IL-1ß was prolonged in high-dose irradiation group at 5 days after irradiation. The production of anti-inflammatory cytokine IL-10 did not change significantly at 3 days after radiation but was significantly reduced at 5 days after 10 Gy radiation. The effect of irradiation on the secretion of IL-1ß and IL-10 was not significantly different between RAW 264.7 cells treated or not treated with LPS. The effect of irradiation on NO secretion by RAW 264.7 cells showed a specific pattern. NO was produced after low-dose irradiation but reduced in a high-dose irradiation group at 3 days after irradiation. However, NO production was not changed after low-dose irradiation and reduced at 5 days after high-dose irradiation. These results showed that irradiation affected the inflammatory system and regulated NO production in both activated and inactivated macrophages through different regulation mechanisms, depending on irradiation dose.  相似文献   

10.
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase‐2 (COX‐2) protein and mRNA levels in lipopolysaccharide (LPS)‐activated RAW 264.7 cells in a dose‐dependent manner. Moreover, GM3 inhibited the expression and release of pro‐inflammatory cytokines of tumor necrosis factor‐alpha (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS‐induced nuclear translocation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and activator protein (AP)‐1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen‐activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS‐activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS‐induced inflammatory response in RAW 264.7 macrophages by suppression of NF‐κB, AP‐1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.  相似文献   

11.
Antimicrobial peptides (AMPs), in addition to their antibacterial properties, are also chemotactic and signalling molecules that connect the innate and adaptive immune responses. The role of AMP [alpha defensins, LL-37, a cathepsin G-derived peptide (CG117-136), protegrins (PG-1), polymyxin B (PMX) and LLP1] in modulating the respiratory burst response in human and murine macrophages in the presence of bacterial endotoxin [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] was investigated. AMP were found to neutralize endotoxin induction of nitric oxide and TNFalpha release in macrophages in a dose-dependent manner. In contrast, macrophages primed overnight with AMP and LOS or LPS significantly enhanced reactive oxygen species (ROS) release compared with cells primed with endotoxin or AMP alone, while no responses were seen in unprimed cells. This enhanced ROS release by macrophages was seen in all cell lines including those obtained from C3H/HeJ (TLR4-/-) mice. Similar effects were also seen when AMP and endotoxin were added directly with zymosan to trigger phagocytosis and the respiratory burst in unprimed RAW 264.7 and C3H/HeJ macrophages. Amplification of ROS release was also demonstrated in a cell-free system of xanthine and xanthine oxidase. Although AMP inhibited cytokine and nitric oxide induction by endotoxin in a TLR4-dependent manner, AMP and endotoxin amplified ROS release in a TLR4-independent manner possibly by exerting a prolonged catalytic effect on the ROS generating enzymes such as the NADPH-oxidase complex.  相似文献   

12.
Airway epithelial cells secrete proinflammatory mediators in response to LPS, but cytokine production by a prominent nonciliated bronchiolar epithelial cell, the Clara cell, specifically, is unknown. To investigate Clara cell cytokine production in response to LPS, we used a transformed murine Clara cell line, C22, and isolated Clara cells from C57Bl/6 mice. Stimulation of both cell types with LPS resulted in significant upregulation of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein-1, but did not induce TNF-alpha production. To determine whether LPS induces cytokine production by Clara cells in vivo, LPS was instilled intratracheally into mice. KC was expressed by Clara cells, alveolar type 2 cells, and alveolar macrophages, 2 h after LPS administration, as determined by in situ hybridization. TNF-alpha, although not expressed in airway epithelial cells, was expressed primarily in alveolar macrophages in response to LPS. To assess the impact of Clara cells on KC and TNF-alpha production in the lung in the early response to LPS, mice were treated with naphthalene to selectively induce Clara cell injury before LPS stimulation. KC expression in the airways and the lung periphery, and KC and TNF-alpha levels in the bronchoalveolar lavage fluid, were significantly reduced in naphthalene-treated vs. vehicle-treated mice after LPS stimulation. Furthermore, transwell cocultures of C22 cells and RAW264.7 macrophages indicated that C22 cells released a soluble factor(s) in response to LPS that enhanced macrophage production of TNF-alpha. These results indicate that Clara cells elaborate cytokines and modulate the lung innate immune response to LPS.  相似文献   

13.
14.
An increased occurrence of long term bacterial infections is common in diabetic patients. Bacterial cell wall components are described as the main antigenic agents from these microorganisms and high blood glucose levels are suggested to be involved in altered immune response. Hyperglycemia is reported to alter macrophages response to lipopolysaccharide (LPS) and peroxisome proliferators activated receptor gamma (PPARgamma) expression. Additionally, glucose is the main metabolic fuel for reduced nicotinamide adenine dinucleotide phosphate (NADPH) production by pentose phosphate shunt. In this work, lipopolysaccharide (LPS) stimulated reactive oxygen species (ROS) and nitrite production were evaluated in peritoneal macrophages from alloxan-induced diabetic rats. Cytosolic dehydrogenases and PPARgamma expression were also investigated. LPS was ineffective to stimulate ROS and nitrite production in peritoneal macrophages from diabetic rats, which presented increased glucose-6-phosphate dehydrogenase and malate dehydrogenase activity. In RAW 264.7 macrophages, acute high glucose treatment abolished LPS stimulated ROS production, with no effect on nitrite and dehydrogenase activities. Peritoneal macrophages from alloxan-treated rats presented reduced PPARgamma expression. Treating RAW 264.7 macrophages with a PPARgamma antagonist resulted in defective ROS production in response to LPS, however, stimulated nitrite production was unaltered. In conclusion, in the present study we have reported reduced nitric oxide and reactive oxygen species production in LPS-treated peritoneal macrophages from alloxan-induced diabetic rats. The reduced production of reactive oxygen species seems to be dependent on elevated glucose levels and reduced PPARgamma expression.  相似文献   

15.
16.
17.
18.
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.  相似文献   

19.
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.  相似文献   

20.
Macrophage-derived secretory leukocyte protease inhibitor (SLPI) can be induced locally as well as systemically in response to microbial products such as LPS and lipotechoic acid. It is not known whether phagocytosis of apoptotic cells, an essential function of macrophages, can regulate expression and secretion of SLPI. In this study, we report that exposure of peritoneal macrophages of BALB/c mice or murine macrophage cell lines RAW264.7 and J774.1 to apoptotic target cells induced an elevation in SLPI secretion. Secreted SLPI retained its antichymotrypsin activity. SLPI expression in thymuses from BALB/c mice that had been injected with anti-CD3 Ab to induce apoptosis of thymocytes was also elevated both at the mRNA and protein levels. Colchicine, a microtubular inhibitor, blocked the internalization of apoptotic cells by macrophages but not SLPI secretion, suggesting that surface recognition of apoptotic cells is sufficient for the induction of SLPI. Exposure of RAW264.7 cells to apoptotic CTLL-2 cells induced both SLPI and TNF-alpha, and addition of IFN-gamma inhibited SLPI but augmented TNF-alpha production. Transfection of either the secreted or a nonsecreted form of SLPI into RAW264.7 cells led to suppression of TNF-alpha production in response to apoptotic cells. Thus, macrophages secrete an increased amount of SLPI when encountering apoptotic cells, which may help to attenuate potential inflammation during clearance of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号