首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies are modular proteins consisting of domains that exhibit a β-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain VL is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a VL domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The VL domain from MAK33 (murine monoclonal antibody of the subtype κ/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this VL domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the VL domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.  相似文献   

2.
The F-actin crosslinker filamin from Dictyostelium discoideum (ddFLN) has a rod domain consisting of six structurally similar immunoglobulin domains. When subjected to a stretching force, domain 4 unfolds at a lower force than all the other domains in the chain. Moreover, this domain shows a stable intermediate along its mechanical unfolding pathway. We have developed a mechanical single-molecule analogue to a double-jump stopped-flow experiment to investigate the folding kinetics and pathway of this domain. We show that an obligatory and productive intermediate also occurs on the folding pathway of the domain. Identical mechanical properties suggest that the unfolding and refolding intermediates are closely related. The folding process can be divided into two consecutive steps: in the first step 60 C-terminal amino acids form an intermediate at the rate of 55 s(-1); and in the second step the remaining 40 amino acids are packed on this core at the rate of 179 s(-1). This division increases the overall folding rate of this domain by a factor of ten compared with all other homologous domains of ddFLN that lack the folding intermediate.  相似文献   

3.
Doyle SM  Braswell EH  Teschke CM 《Biochemistry》2000,39(38):11667-11676
Though many proteins in the cell are large and multimeric, their folding has not been extensively studied. We have chosen SecA as a folding model because it is a large, homodimeric protein (monomer molecular mass of 102 kDa) with multiple folding domains. SecA is the ATPase for the Sec-dependent preprotein translocase of many bacteria. SecA is a soluble protein that can penetrate into the membrane during preprotein translocation. Because SecA may partially unfold prior to its insertion into the membrane, studies of its stability and folding pathway are important for understanding how it functions in vivo. Kinetic folding transitions in the presence of urea were monitored using circular dichroism and tryptophan fluorescence, while equilibrium folding transitions were monitored using the same techniques as well as a fluorescent ATP analogue. The reversible equilibrium folding transition exhibited a plateau, indicating the presence of an intermediate. Based on the data presented here, we propose a three-state model, N(2) if I(2) if 2U, where the native protein unfolds to a dimeric intermediate which then dissociates into two unfolded monomers. The SecA dimer was determined to have an overall stability (DeltaG) of -22.5 kcal/mol. We also investigated the stability of SecA using analytical ultracentrifugation equilibrium and velocity sedimentation, which again indicated that native or refolded SecA was a stable dimer. The rate-limiting step in the folding pathway was conversion of the dimeric intermediate to the native dimer. Unfolding of native, dimeric SecA was slow with a relaxation time in H(2)O of 3.3 x 10(4) s. Since SecA is a stable dimer, dissociation to monomeric subunits during translocation is unlikely.  相似文献   

4.
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

5.
During its folding, the polypeptide chain of the beta 2 subunit of Escherichia coli tryptophan synthase (L-serine hydrolyase (adding indole) EC 4.2.1.20) undergoes dimerization. To decide whether this dimerization precedes or follows the formation of the native, functional, tertiary structure of the polypeptide chain, the kinetics of renaturation of beta 2 are studied by monitoring both the regain of native conformation and the dimerization. Dimer formation is followed by the increase of the fluorescence polarization, or by energy transfer between a fluorescence donor and a fluorescence acceptor, which occur upon association of adequately labelled beta chains. Renaturation is followed by the regain of functional properties of beta 2, i.e. its ability to bind pyridoxal-5'-phosphate or to form a fluorescent ternary complex with this coenzyme and L-serine. It is shown that for beta 2 the dimerization obeys first-order kinetics, presumably because it occurs rapidly after a rate-limiting isomerization of the monomer. The dimerization is followed by another isomerization, taking place within the dimer, which leads to the formation of the pyridoxal-5'-phosphate binding site. Still another, slow, isomerization reaction involving the F1 (N-terminal) domain completes the renaturation. With a modified form of beta 2 (trypsin-nicked beta 2) where this isomerization of F1 can be made to occur before the dimerization, the dimer is also shown to appear before the functional properties. It is concluded that a non-native dimer indeed exists as an obligatory intermediate on the folding pathway of nicked beta 2 and of beta 2, and that interdomain interactions are needed to force the polypeptide chains into their native conformations.  相似文献   

6.
Determining the relationship between protein folding pathways on and off the ribosome remains an important area of investigation in biology. Studies on isolated domains have shown that alteration of the separation of residues in a polypeptide chain, while maintaining their spatial contacts, may affect protein stability and folding pathway. Due to the vectorial emergence of the polypeptide chain from the ribosome, chain connectivity may have an important influence upon cotranslational folding. Using MATH, an all β-sandwich domain, we investigate whether the connectivity of residues and secondary structure elements is a key determinant of when cotranslational folding can occur on the ribosome. From Φ-value analysis, we show that the most structured region of the transition state for folding in MATH includes the N and C terminal strands, which are located adjacent to each other in the structure. However, arrest peptide force-profile assays show that wild-type MATH is able to fold cotranslationally, while some C-terminal residues remain sequestered in the ribosome, even when destabilized by 2–3?kcal?mol?1. We show that, while this pattern of Φ-values is retained in two circular permutants in our studies of the isolated domains, one of these permutants can fold only when fully emerged from the ribosome. We propose that in the case of MATH, onset of cotranslational folding is determined by the ability to form a sufficiently stable folding nucleus involving both β-sheets, rather than by the location of the terminal strands in the ribosome tunnel.  相似文献   

7.
Chen P  Evans CL  Hirst JD  Searle MS 《Biochemistry》2011,50(1):125-135
The PB1 domain of NBR1 folds via a single pathway mechanism involving two sequential energy barriers separated by a high-energy intermediate. The structural ensemble representing each of the two transition states (TS1 and TS2) has been calculated using experimental Φ values and biased molecular dynamics simulations. Both TS1 and TS2 represent compact states (β(TS1) = 0.71, and β(TS2) = 0.93) but are defined by quite different distributions of Φ values, degrees of structural heterogeneity, and nativelike secondary structure. TS1 forms a heterogeneous ensemble of dynamic structures, representing a global collapse of the polypeptide chain around a set of weak nativelike contacts. In contrast, TS2 has a high proportion of nativelike secondary structure, which is reflected in an extensive distribution of high Φ values. Two snapshots along the folding pathway of the PB1 domain reveal insights into the malleability, the solvent accessibility, and the timing of nativelike core packing that stabilizes the folded state.  相似文献   

8.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

9.
Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding–unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions.  相似文献   

10.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

11.
12.
The D135 group II intron ribozyme follows a unique folding pathway that is direct and appears to be devoid of kinetic traps. During the earliest stages of folding, D135 collapses slowly to a compact intermediate, and all subsequent assembly events are rapid. Collapse of intron domain 1 (D1) has been shown to limit the rate constant for D135 folding, although the specific substructure of the D1 kinetic intermediate has not yet been identified. Employing time-resolved nucleotide analog interference mapping, we have identified a cluster of atoms within the D1 main stem that control the rate constant for D135 collapse. Functional groups within the κ-ζ element are particularly important for this earliest stage of folding, which is intriguing given that this same motif also serves later as the docking site for catalytic domain 5. More important, the κ-ζ element is shown to be a divalent ion binding pocket, indicating that this region is a Mg2+-dependent switch that initiates the cascade of D135 folding events. By measuring the Mg2+ dependence of the compaction rate constant, we conclude that the actual rate-limiting step in D1 compaction involves the formation of an unstable folding intermediate that is captured by the binding of Mg2+. This carefully orchestrated folding pathway, in which formation of an active-site docking region is early and rate limiting, ensures proper folding of the intron core and faithful splicing. It may represent an important paradigm for the folding of large, multidomain RNA molecules.  相似文献   

13.
Protein domains usually fold without or with only transiently populated intermediates, possibly to avoid misfolding, which could result in amyloidogenic disease. Whether observed intermediates are productive and obligatory species on the folding reaction pathway or dispensable by-products is a matter of debate. Here, we solved the crystal structure of a small protein domain, SAP97 PDZ2 I342W C378A, and determined its folding pathway. The presence of a folding intermediate was demonstrated both by single and double-mixing kinetic experiments using urea-induced (un)folding as well as ligand-induced folding. This protein domain was found to fold via a triangular scheme, where the folding intermediate could be either on- or off-pathway, depending on the experimental conditions. Furthermore, we found that the intermediate was present at equilibrium, which is rarely seen in folding reactions of small protein domains. The folding mechanism observed here illustrates the roughness and plasticity of the protein folding energy landscape, where several routes may be employed to reach the native state. The results also reconcile the folding mechanisms of topological variants within the PDZ domain family.  相似文献   

14.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

15.
The B-domain of protein A has one of the simplest protein topologies, a three-helix bundle. Its folding has been studied as a model for elementary steps in the folding of larger proteins. Earlier studies suggested that folding might occur by way of a helical hairpin intermediate. Equilibrium hydrogen exchange measurements indicate that the C-terminal helical hairpin could be a potential folding intermediate. Kinetic refolding experiments were performed using stopped-flow circular dichroism and NMR hydrogen-deuterium exchange pulse labeling. Folding of the entire molecule is essentially complete within the 6 ms dead time of the quench-flow apparatus, indicating that the intermediate, if formed, progresses rapidly to the final folded state. Site-directed mutagenesis of the isoleucine residue at position 16 was used to generate a variant protein containing tryptophan (the 116 W mutant). The formation of the putative folding intermediate was expected to be favored in this mutant at the expense of the native folded form, due to predicted unfavorable steric interactions of the bulky tryptophan side chain in the folded state. The 116 W mutant refolds completely within the dead time of a stopped-flow fluorescence experiment. No partly folded intermediate could be detected by either kinetic or equilibrium measurements. Studies of peptide fragments suggest that the protein A sequence has an intrinsic propensity to form a helix II/helix III hairpin. However, its stability appears to be marginal (of the order of 1/2 kT) and it could not be an obligatory intermediate on a defined folding pathway. These results explicitly demonstrate that the protein A B domain folds extremely rapidly by an apparent two-state mechanism without formation of stable partly folded intermediates. Similar mechanisms may also be involved in the rapid folding of subdomains of larger proteins to form the compact molten globule intermediates that often accumulate during the folding process.  相似文献   

16.
Myosin II folding is mediated by a molecular chaperonin.   总被引:2,自引:0,他引:2  
  相似文献   

17.
Disulfide bridges are one of the most important factors stabilizing the native structure of a protein. Whereas the basis for their stabilizing effect is well understood, their role in a protein folding reaction still seems to require further attention. We used the constant domain of the antibody light chain (C(L)), a representative of the ubiquitous immunoglobulin (Ig)-superfamily, to delineate the kinetic role of its single buried disulfide bridge. Independent of its redox state, the monomeric C(L) domain adopts a typical Ig-fold under native conditions and does not retain significant structural elements when unfolded. Interestingly, its folding pathway is strongly influenced by the disulfide bridge. The more stable oxidized protein folds via a highly structured on-pathway intermediate, whereas the destabilized reduced protein populates a misfolded off-pathway species on its way to the native state. In both cases, the formation of the intermediate species is shown to be independent of the isomerization state of the Tyr(141)-Pro(142) bond. Our results demonstrate that the internal disulfide bridge in an antibody domain restricts the folding pathway by bringing residues of the folding nucleus into proximity thus facilitating the way to the native state.  相似文献   

18.
The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which "clamps" the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg2+-mediated folding pathway. The folding hierarchy of P5c approximately P4-P6 > periphery > catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are > or =50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg2+. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.  相似文献   

19.
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central β-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire β-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone β-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.  相似文献   

20.
The Notch ankyrin repeat domain contains seven ankyrin sequence repeats, six of which adopt very similar structures. To determine if folding proceeds along parallel pathways and the order in which repeats become structured during folding, we examined the effect of analogous destabilizing Ala-->Gly substitutions in each repeat on folding kinetics. We find that folding proceeds to an on-pathway kinetic intermediate through a transition state ensemble containing structure in repeats three through five. Repeats two, six, and seven remain largely unstructured in this intermediate, becoming structured in a second kinetic step that leads to the native state. These data suggest that the Notch ankyrin domain folds according to a discrete kinetic pathway despite structural redundancy in the native state and highlight the importance of sequence-specific interactions in controlling pathway selection. This centralized pathway roughly corresponds to a low energy channel through the experimentally determined energy landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号