首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

2.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

3.
The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors.  相似文献   

4.
Catecholamine secretion in the bovine adrenal medulla is evoked largely by nicotinic receptor activation. However, bovine adrenal medulla also contain muscarinic receptors that mediate several cell responses. To understand the physiological role of muscarinic receptors in the bovine adrenal medulla it is important to identify the pharmacological subtypes present in this tissue. For this, we analyzed the abilities of differnt selective muscarinic antagonists in displacing the binding of the non-selective antagonist [3H] quinuclidinyl benzylate to an enriched plasma membrane fraction prepared from bovine adrenal medulla. All the selective antagonists bind at least two bindings sites with different affinities. The binding profile of the sites with high proportion is similar to the M2 subtype and those present in low proportion have a M1 profile. However, some variation in the proportion of the sites for the different ligands suggest the presence of the third pharmacological subtype (M3). We conclude that the sites in high proportion (60–80%) correspond to M2 muscarinic subtypes, and the rest is constitute by M1 plus M3 subtypes. The presence of multiplicity of subtypes in the adrenal medulla membranes suggests a diversity of functions of muscarinic receptors in the adrenal gland.Abbreviations [3H]QNB [3H]quinuclidinyl benzylate - HHSiD hexahydro-siladifenidol-hydrochloride - AF-DX 116 11-[[2-(diethylamino)methyl]]-1-piperidinyl]-5,11-dihydro-6H-pyrido[2,3,-b][1,4]benzodiazepin-6-one - 4-DAMP 4-diphenylacetoxy-N-methyl piperidine methobromide  相似文献   

5.
Some atypical muscarinic drugs were compared with classical drugs with respect to inhibition of specific binding of [3H]pirenzepine ([3H]PZ) and [3H]quinuclidinyl benzilate ([3H]QNB) to membrane preparations of rat brain. The interactions of the agonists McN-A343 and carbachol with [3H]QNB at muscarinic sites in brain stem preparations were differently modulated in the presence of an excess of PZ. Moreover, McN-A343 exhibited a preferential affinity for [3H]PZ sites in whole brain membranes whereas carbachol bound with high affinity to [3H]QNB sites in brain stem preparations. Various muscarinic agonists and antagonists displayed different affinity patterns in the [3H]PZ and [3H]QNB binding. These data are indicative of two populations of pharmacologically distinguishable binding sites and support the concept of muscarinic receptor heterogeneity in rat brain.  相似文献   

6.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

9.
Stimulation of muscarinic receptors increases phosphoinositide (PI) hydrolysis in 132-1N1 human astrocytoma cells. To evaluate the subtype of receptors which mediate PI hydrolysis in 132-1N1 cells, the effects of: a) the nonselective M1 agonist, carbachol; b) the selective M1 agonist, 4-hydroxy-2-butynyl-trimethylammonium chloride-m-chlorocarbinilate (McN-343); c) the nonselective antagonists, atropine and scopolamine; d) the relatively selective M1 antagonist, pirenzepine; e) the relatively selective M2 antagonists, AF-DX 116 (11-2-diethylaminomethyl-1-piperidinylacetyl-5, 11-dihydro-6H-pyrido-2,3-b-1,4-benzodiazepine-6-one) and methoctramine and f) the relatively selective M3 antagonist, hexahydrosila-difenidol (HHSiD) on PI hydrolysis in 132-1N1 cells were studied. The cell pools of inositol-phospholipids were prelabelled by incubating 132-1N1 cells in a low inositol containing medium (CMRL-1066) supplemented with [3H]inositol (2 microCi/ml) for 20-24 hours at 37 degrees C. The cells were washed and resuspended in a physiological salt solution, and PI hydrolysis was measured by accumulation of [3H]inositol-1-phosphate (IP) in the presence of 10 mM LiCl. Carbachol produced time and concentration dependent PI hydrolysis (EC50, 37 microM). McN-A343 did not cause significant hydrolysis of PI in 132-1N1 cells indicating that the receptor was not of M1 type. All the above muscarinic antagonists caused a concentration dependent decrease in the level of IP in response to carbachol (100 microM). The rank order of their affinities (pA2 values) was: atropine (8.8) > HHSiD (7.6) > pirenzepine (6.8) > methoctramine (6.0) > AF-DX 116 (5.8). This rank order supports the concept that M3 (other names, M2 beta, glandular M2) receptors are linked to PI hydrolysis in 132-1N1 cells. HHSiD, which is selective for M3 receptors of the smooth muscle has higher affinity for muscarinic receptors in 132-1N1 cells than AF-DX 116 which is selective for M2 receptors in cardiac tissue. If the receptor in 132-1N1 cells had been M2, part of the rank order for affinities would have been methoctramine > AF-DX 116 > HHSiD > pirenzepine. From all of these observations, the muscarinic receptor for PI hydrolysis in 132-1N1 cells is tentatively characterized as of M3 type.  相似文献   

10.
After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  相似文献   

11.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

12.
Human erythrocyte ghosts contain a small population of muscarinic cholinergic receptors, as evidenced by their high affinity binding of radiolabeled quinuclinidinyl benzilate ([3H]QNB). The apparent KD is 1.3 × 10?9 M and the receptor sites are saturated at a QNB concentration of 5 nM. The number of sites is 23 fmoles/mg membrane protein. The pharmacological profile of the specific binding is similar to that of neural membranes. The binding is not stereoselective for the d and 1 isomers of QNB, a situation which prevails in the muscarinic receptors of another peripheral cholinergic system, the rat iris, but not in the central nervous system.  相似文献   

13.
Radioligand binding was conducted on airways of the rat and human, surgically subdivided into trachea, lung airways, and parenchyma. 3H-QNB bound uniformly to receptors in separate sections of the rat and human airway. Receptor densities generally were ranked: lung airways greater than trachea greater than parenchyma. Receptor subtypes were identified mostly by pirenzepine displacement of bound 3H-QNB. The rat trachea, and rat and human lung airways had a uniformly low affinity for pirenzepine while rat and human parenchyma demonstrated both high and low affinity pirenzepine binding. Inhibition of methacholine-stimulated smooth muscle contraction by the M1 receptor antagonist, pirenzepine, and M2 receptor antagonist, gallamine, was studied in rat trachea and bronchus in vitro. Schild plot pA2 values were compatible with low potency antagonism, thereby favoring the presence of M3 receptors at these smooth muscle sites. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) produced a decrease in peak tension in response to methacholine without changing the muscarinic receptor character (Kd 3H-QNB), population density (Bmax in fmol mg-1 protein), or function (methacholine EC50). These results indicate that muscarinic receptor heterogeneity exists in the airway of both laboratory rat and man. While the muscarinic receptor subserving airway smooth muscle contraction appears to be the M3 subtype, decreased contractile responses to methacholine by trachea and bronchus from reserpine-treated rats were receptor independent.  相似文献   

14.
The antagonist binding properties of rat pancreatic and cardiac muscarinic receptors were compared. In both tissues pirenzepine (PZ) had a low affinity for muscarinic receptors labelled by (3H)N-methylscopolamine [3)NMS) (KD values of 140 and 280 nM, respectively, in pancreatic and cardiac homogenates). The binding properties of pancreatic and cardiac receptors were, however, markedly different. This was indicated by different affinities for dicyclomine, (11-([(2-[diethylamino)-methyl)-1-piperidinyl] acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4) benzodiazepin-6-on) (AFDX-116), 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP) and hexahydrosiladifenidol (HHSiD). Pancreatic and cardiac muscarinic receptors also showed different (3H)NMS association and dissociation rates. These results support the concept of M2 receptor heterogeneity and confirm that M2 receptor subtypes have different binding kinetic properties.  相似文献   

15.
Although prior studies have supported the validity of measuring total muscarinic receptor binding in postmortem brain, there has not been a study of postmortem effects on muscarinic receptor subtypes, M1 and M2, defined by high and low affinity for pirenzepine, respectively. We have examined in rat brain the effect of postmortem delay at room temperature, storage at 4 degrees C and -20 degrees C, and multiple freeze/thaw cycles on total muscarinic binding, measured with [3H]quinuclidinylbenzilate ([3H]QNB) and on M1 muscarinic binding, measured with [3H]pirenzepine ([3H]Pir). We found that delay at room temperature up to 4 h, or storage at 4 degrees C for 24 h or at -20 degrees C for 4 weeks, or 3 freeze/thaw cycles had no effect on [3H]QNB or [3H]Pir binding. Exposure of brain to room temperature for 15 h, however, led to an increase in [3H]QNB binding, without change in [3H]Pir. Scatchard analysis showed an increase in binding sites without a change in affinity. We conclude that [3H]QNB and [3H]Pir are valid measures of total and M1 muscarinic binding, respectively, under these circumstances, but that caution must be used in the interpretation of indirect measures of M2 binding.  相似文献   

16.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

17.
In isolated rat hearts L-alphacetylmethadol (LAAM) produced a concentration-dependent decrease in the spontaneous beating rate. This effect was completely prevented by 1.0 microM atropine. Chronic treatment of rats with LAAM increased the number of striatal dopamine receptors measured by [3H]spiroperidol binding. The affinity of these binding sites for [3H]spiroperidol was unchanged by LAAM treatment. There were no significant changes in the number or affinity of binding sites for the labeled muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) with chronic LAAM treatment. The ability of LAAM, nor-LAAM, or dinor-LAAM to antagonize the binding of [3H]spiroperidol (40 pM) or [3H]QNB (125 pM) to striatal membrane fragments was tested. The measured affinity constants for LAAM and metabolites were 100-3000 times higher than the affinity constants of unlabeled spiroperidol at [3H]spiroperidol binding sites. The affinity constants of LAAM and metabolites at muscarinic binding sites were 10-20 times higher than pilocarpine and 5000-8000 times higher than atropine. These results suggest that LAAM can produce some of its effects by acting as a weak agonist at muscarinic receptor sites.  相似文献   

18.
Ma AW  Redka DS  Pisterzi LF  Angers S  Wells JW 《Biochemistry》2007,46(26):7907-7927
FLAG- and HA-tagged M2 muscarinic receptors from coinfected Sf9 cells have been purified in digitonin-cholate and reconstituted into phospholipid vesicles. The purified receptor was predominantly monomeric: it showed no detectable coimmunoprecipitation; it migrated as a monomer during electrophoresis before or after cross-linking with bis(sulfosuccinimidyl)suberate; and it bound agonists and antagonists in a manner indicative of identical and mutually independent sites. Receptor cross-linked after reconstitution or after reconstitution and subsequent solubilization in digitonin-cholate migrated almost exclusively as a tetramer. The binding properties of the reconstituted receptor mimicked those reported previously for cardiac muscarinic receptors. The apparent capacity for N-[3H]methylscopolamine (NMS) was only 60% of that for [3H]quinuclidinylbenzilate (QNB), yet binding at saturating concentrations of [3H]QNB was inhibited fully and in a noncompetitive manner at comparatively low concentrations of unlabeled NMS. Reconstitution of the receptor with a saturating quantity of functional G proteins led to the appearance of three classes of sites for the agonist oxotremorine-M in assays with [3H]QNB; GMP-PNP caused an apparent interconversion from highest to lowest affinity and the concomitant emergence of a fourth class of intermediate affinity. All of the data can be described quantitatively in terms of cooperativity among four interacting sites, presumably within a tetramer; the effect of GMP-PNP can be accommodated as a shift in the distribution of tetramers between two states that differ in their cooperative properties. Monomers of the M2 receptor therefore can be assembled into tetramers with binding properties that closely resemble those of the muscarinic receptor in myocardial preparations.  相似文献   

19.
The binding characteristics of cholinergic sites in rabbit spermatozoa   总被引:1,自引:0,他引:1  
Binding of neurotrophic ligands to rabbit spermatozoa was studied. Nicotinic cholinergic antagonists, [3H]alpha-bungarotoxin and [3H]dihydro-beta-erythroidine (DE), bound with high affinity to different sites in the tails of rabbit spermatozoa with the former binding to 10,207 sites/cell and the latter to 562 sites/cell. alpha-Bungarotoxin and DE sites resemble nicotinic sites in brain in binding affinity and specificity. [3H]Quinuclidinyl benzilate (QNB), a muscarinic cholinergic antagonist, also bound with high affinity to a single class of sites located in the heads and tails of rabbit spermatozoa. The binding characteristics of the sperm muscarinic site are similar to muscarinic sites in both innervated and noninnervated cells. Rabbit spermatozoa incubated for 16-18 h in a medium which supported motility for an extended period possessed fewer binding sites than nonincubated spermatozoa for [3H] alpha-bungarotoxin and [3H]QNB and the KD for the latter ligand was also lower. Ligands specific for the kappa and delta opiate receptors showed no affinity for rabbit spermatozoa.  相似文献   

20.
The selective muscarinic antagonist L-[3H]-quinuclidinyl benzilate (L-[3H]QNB) binds reversibly and with high affinity (KD = 0.3 nM) to a single population (Bmax = 105 fmol/mg protein) of specific sites in nervous tissue of the crab Cancer magister. The binding site is stereoselective; (-)QNB is over 200 times more potent than (+)QNB as an inhibitor of specific L-[3H]QNB binding. The muscarinic antagonists scopolamine and atropine are over 10,000 times more potent inhibitors of L-[3H]QNB binding than the nicotinic antagonists decamethonium and d-tubocurarine. The muscarinic agonists oxotremorine, pilocarpine, arecoline, and carbachol also compete effectively for the L-[3H]QNB binding site. This pharmacological profile strongly suggests the presence of classical muscarinic receptors in the crab nervous system. These receptors are localized to nervous tissue containing cell bodies and neuropil, whereas specific L-[3H]QNB binding is low or absent in peripheral nerve, skeletal muscle, and artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号