首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5′ ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted ‘steric exclusion’ model for dsDNA unwinding, the active 3′ ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5′ passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases.  相似文献   

2.
3.
Packaging of the Cystovirus varphi8 genome into the polymerase complex is catalysed by the hexameric P4 packaging motor. The motor is located at the fivefold vertices of the icosahedrally symmetric polymerase complex, and the symmetry mismatch between them may be critical for function. We have developed a novel image-processing approach for the analysis of symmetry-mismatched structures and applied it to cryo-electron microscopy images of P4 bound to the polymerase complex. This approach allowed us to solve the three-dimensional structure of the P4 in situ to 15-A resolution. The C-terminal face of P4 was observed to interact with the polymerase complex, supporting the current view on RNA translocation. We suggest that the symmetry mismatch between the two components may facilitate the ring opening required for RNA loading prior to its translocation.  相似文献   

4.
Protein translocation and N-glycosylation are essential coordinated cellular processes that are mediated by the translocon and the oligosaccharyl transferase (OT), respectively. The recent identification of several specific interactions between the OT subunits and the translocon provides a molecular basis for the coupling of these two processes. Data suggest that multiple OT isoforms with different affinities for the translocon and ribosome and with heterogeneous subunit composition might exist in the endoplasmic reticulum (ER) membrane, thereby providing a means of regulating protein N-glycosylation.  相似文献   

5.
6.
7.
8.
The amphibian egg undergoes a 30 degree rotation of its subcortical contents relative to its surface during the first cell cycle, a displacement of 350 micron in 50 min. This is directly visualized by following the movement of an array of Nile blue (a subcortical stain) spots applied to the egg periphery (Vincent, Oster, and Gerhart: Dev Bio 113:484-500, '86). We have investigated the mechanochemical basis of this unusual cell motility. Subcortical rotation depends on microtubule integrity during its entire course and is insensitive to inhibitors of microfilament assembly. It does not depend on newly synthesized proteins for its operation or timing, and it does not involve calcium-dependent processes. Finally, we show that vegetal fragments of the egg can complete rotation on their own, indicating that mechanochemical components can operate locally in this hemisphere.  相似文献   

9.
The ras oncogene product p21 functions as a molecular switch in the early section of the signal transduction pathway that is involved in cell growth and differentiation. When the protein is in its GTP-complexed form it is active in signal transduction, whereas it is inactive in its GDP-complexed form. The transforming activity of p21ras is neutralized by the mouse monoclonal antibody Y13-259, possibly by preventing GDP-GTP exchange. A molecular model of the variable fragment of Y13-259 has been derived using a knowledge-based prediction approach and computer-assisted modeling techniques. An analysis of this model while complexed with p21ras/(GDP) indicated that the two molecular switch regions are constrained by complex formation. Antibody binding inhibits GDP-GTP exchange through a mechanism of steric hindrance. Having identified necessary bound sites for inhibition, and explored their electrostatic properties, it should be possible to proceed with the design of antibody mimics as therapeutic agents in cancer control.  相似文献   

10.
The syndecan transmembrane proteoglycans are involved in the organization of the actin cytoskeleton and have important roles as cell surface receptors during cell-matrix interactions. We have shown that the syndecan-4 cytoplasmic domain (4L) forms oligomeric complexes that bind to and stimulate PKCalpha activity in the presence of PtdIns(4,5)P2, emphasizing the importance of multimerization in the regulation of PKCalpha activation. Oligomerization of the cytoplasmic domain of syndecan-4 is regulated either positively by PtdIns(4,5)P2 or negatively by phosphorylation of serine 183. Phosphorylation results in reduced PKCalpha activity by inhibiting PtdIns(4,5)P2-dependent oligomerization of the syndecan-4 cytoplasmic domain. Data from NMR and gel-filtration chromatography show that the phosphorylated cytoplasmic domain (p-4L) exists as a dimer, similar to 4L, but not as higher-order oligomers. NMR analysis showed that the overall conformation of p-4L is a compact intertwined dimer with an unusually symmetric clamp shape, and its molecular surface is mostly positively charged. The two parallel strands form a cavity in the center of the dimeric twist. An especially marked effect of phosphorylation of the syndecan-4 cytoplasmic domain is a dramatic conformational change near the C2 region that ablates an interaction site with the PDZ domain of syntenin. Wound healing studies further suggest that syndecan-4 phosphorylation might influence cell migration behavior. We conclude that the phosphorylation (Ser183) of syndecan-4 can play a critical role as a molecular switch to regulate its functions through conformational change.  相似文献   

11.
This is a thorough biochemical, spectroscopic, electrochemical, and structural study of a cytochrome c(6) isolated from the filamentous green alga Cladophora glomerata. The protein sequence, elucidated using chemical and mass spectrometric techniques, features 91 amino acids and the characteristic CXXCH heme-binding motif found in c-type cytochromes. The protein is monomeric in both oxidation forms, thereby putting in question a functional role for protein dimerization. Direct electrochemical measurements established, for the first time, the kinetic and thermodynamic data for the redox process in a cytochrome c(6). In particular, the quasi-reversible and diffusion-controlled redox process is accompanied by negative enthalpy and entropy changes, resulting in an E degrees ' value of 0.352 V at 298 K. The pH-dependent properties of the oxidized protein, detected by UV-visible, NMR, and direct cyclic voltammetry, indicate the presence of two acid-base equilibria occurring in the acidic (pK(a) = 4.5) and alkaline regions (pK(a) = 9.0). NMR and electronic spectra allowed the assignment of these equilibria to deprotonation of heme propionate-7 and to replacement of the axial methionine with another ligand, respectively. The 1.3 A resolution X-ray structure of the oxidized protein, revealing a fold typical for class I cytochromes, suggests that the conserved Lys60 replaces the axial methionine at pH >9. The heme solvent accessibility is low, and no water molecules were found in the vicinity of the axial ligands of the heme Fe. A structure-based alignment of cytochromes c(6), and the direct comparison of their structures, indicate a substantial degree of identity between the tertiary structures and suggest patches involved in protein-protein interaction. In particular, the surface electrostatic potential of cytochromes c(6) features a hydrophobic region around the heme cofactor, and a backside surface rich in negative charges.  相似文献   

12.
Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level.  相似文献   

13.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

14.
Nearly 60 years ago, Alan Turing showed theoretically how two chemical species, termed morphogens, diffusing and reacting with each other can generate spatial patterns. Diffusion plays a crucial part in transporting chemical signals through space to establish the length scale of the pattern. When coupled to chemical reactions, mechanical processes - forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis. forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis.  相似文献   

15.
  相似文献   

16.
Gilmore SF  Nanduri H  Parikh AN 《PloS one》2011,6(12):e28517
In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton.  相似文献   

17.
Fourier-transform infrared (FTIR) spectroscopy has been used to quantitatively examine the secondary structure of imprinted (i.e., lyophilized in the presence of multifunctional ligands followed by removal of the latter) proteins in anhydrous media. Lysozyme, chymotrypsinogen, and bovine serum albumin, imprinted with L-malic acid, all exhibited significant differences in the secondary structure compared to that of their nonimprinted counterparts. A rise in the beta-sheet content, which invariably occurs upon lyophilization, is substantially lower for imprinted proteins. Alterations in the alpha-helix contents of these proteins have also been observed upon imprinting, although these changes are specific to the protein. A structural explanation has been obtained herein for other previously observed aspects of the protein imprinting phenomenon, including the effects of the ligand and the solvent and the lack of enantioselectivity. Exposure to aqueous solution, but not to anhydrous solvents, results in the disappearance of imprinting-induced changes in the secondary structure of proteins. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
19.
It is argued that the force driving muscular shortening (psi) differs from that (phi) responsible for rigor tension generation. psi is associated with ATP-induced dissociation of actomyosin (a.m.), whereas phi is due to an isomerization reaction of a.m., following the hydrolysis of ATP. Both forces are intimately coupled with appreciable changes in the structure of the hydration shell of a.m., mainly at the interface between the two proteins, which involve the release of stored energy. When an active muscle is allowed to shorten freely, psi gives rise to a sliding distance (s.d.) delta l1 which differs in character and in magnitude from the s.d. (delta l2) observed when a muscle which had developed rigor tension isometrically is released. The maximal values of the two forces (psi 0 and phi 0) as well as delta l2 are calculated on the basis of experimental data. The forces and their corresponding s.d.'s are related through the standard free energies of the chemical reactions which are responsible for them. It is claimed that the same mechanochemical (m.c.) mechanisms operate also in all microtube-based locomotion and force-generation systems and, furthermore, that practically the same values of psi 0, phi 0, delta l1, and delta l2 are shared by the two types of biological m.c. convertors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号