首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myometrial smooth muscle strips were collected from slaughtered cows in estrus and diestrus. Longitudinal and circular smooth muscle strips were mounted in organ baths and after equilibration time and 2 g preload, their physiologic contractility was recorded for 3 h. Area under the curve (AUC), mean amplitude (MA) and frequency of contractions (F) were studied. Differences between cycle phases, between muscle layers and over the recorded time period were statistically evaluated. In the cow, physiologic contractility patterns (measured as AUC and MA) of circular versus longitudinal myometrial strips are always different during the 3 h recording. Significant differences between estrus versus diestrus are only found for circular layers, but not for longitudinal layers. Significant differences over time are only found for longitudinal layers.  相似文献   

2.
Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In na?ve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in na?ve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.  相似文献   

3.
Aerobic exercise increases whole body adipose tissue lipolysis, but is lipolysis higher in subcutaneous adipose tissue (SCAT) adjacent to contracting muscles than in SCAT adjacent to resting muscles? Ten healthy, overnight-fasted males performed one-legged knee extension exercise at 25% of maximal workload (W(max)) for 30 min followed by exercise at 55% W(max) for 120 min with the other leg and finally exercised at 85% W(max) for 30 min with the first leg. Subjects rested for 30 min between exercise periods. Femoral SCAT blood flow was estimated from washout of (133)Xe, and lipolysis was calculated from femoral SCAT interstitial and arterial glycerol concentrations and blood flow. In general, blood flow and lipolysis were higher in femoral SCAT adjacent to contracting than adjacent to resting muscle (time 15-30 min; blood flow: 25% W(max) 6.6 +/- 1.0 vs. 3.9 +/- 0.8 ml x 100 g(-1) x min(-1), P < 0.05; 55% W(max) 7.3 +/- 0.6 vs. 5.0 +/- 0.6 ml x 100 g(-1) x min(-1), P < 0.05; 85% W(max) 6.6 +/- 1.3 vs. 5.9 +/- 0.7 ml x 100 g(-1) x min(-1), P > 0.05; lipolysis: 25% W(max) 102 +/- 19 vs. 55 +/- 14 nmol x 100 g(-1) x min(-1), P = 0.06; 55% W(max) 86 +/- 11 vs. 50 +/- 20 nmol x 100 g(-1) x min(-1), P > 0.05; 85% W(max) 88 +/- 31 vs. -9 +/- 25 nmol x 100 g(-1) x min(-1), P < 0.05). In conclusion, blood flow and lipolysis are generally higher in SCAT adjacent to contracting than adjacent to resting muscle irrespective of exercise intensity. Thus specific exercises can induce "spot lipolysis" in adipose tissue.  相似文献   

4.
The present study was undertaken to elucidate the role of OT in myometrial contractility in sows. Spontaneous and OT-stimulated contractions of the inner circular (CM) and outer longitudinal (LM) layers isolated from cyclic (Days 14-16) and early pregnant (Days 14-16) sows were examined in six cyclic and six pregnant sows. In addition, the role of P(4) in the modulation of OT-induced uterine contractions was investigated. The contractile activity of the LM and CM layers was recorded in a tissue chamber filled with Krebs-Ringer solution. Myometrial contractility was expressed as area under the contractility curve (AUC) and frequency of contractions. Myometrial longitudinal and circular muscles exhibited spontaneous contractility in sows during both luteolysis and early-pregnancy. The mean AUC was higher (p<0.05) in the LM layer compared to the CM layer in both cyclic and pregnant animals. In addition, pregnant sows were characterized by higher AUC in both LM and CM layers in comparison to cyclic sows. The CM layer was unresponsive to examined treatments. Oxytocin (1-3x10(-8) and 1-3x10(-7)M) increased the AUC and frequency of contractions of the LM layer in both examined animal groups, being more effective during luteolysis (p<0.001) than early pregnancy (p<0.01). Response of the LM layer to OT appeared to be clearly related to the initial spontaneous level of contractility. This response to OT was inhibited (p<0.05) in the presence of OT antagonist (10(-6)M). Moreover, in pregnant sows, OT-stimulated contractile activity of myometrium was inhibited (p<0.05) by P(4) (10(-5)M). In conclusion, OT receptors present in myometrial cells (especially in the LM layer) are involved in the regulation of contractile activity of porcine myometrium during luteolysis and early-pregnancy. In addition, progesterone appears to be involved in this regulation.  相似文献   

5.
Changes in the ECM and increased airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma and chronic obstructive pulmonary disease. It has recently been demonstrated that ECM proteins may differentially affect proliferation and expression of phenotypic markers of cultured ASM cells. In the present study, we investigated the functional relevance of ECM proteins in the modulation of ASM contractility using bovine tracheal smooth muscle (BTSM) preparations. The results demonstrate that culturing of BSTM strips for 4 days in the presence of fibronectin or collagen I depressed maximal contraction (E(max)) both for methacholine and KCl, which was associated with decreased contractile protein expression. By contrast, both fibronectin and collagen I increased proliferation of cultured BTSM cells. Similar effects were observed for PDGF. Moreover, PDGF augmented fibronectin- and collagen I-induced proliferation in an additive fashion, without an additional effect on contractility or contractile protein expression. The fibronectin-induced depression of contractility was blocked by the integrin antagonist Arg-Gly-Asp-Ser (RGDS) but not by its negative control Gly-Arg-Ala-Asp-Ser-Pro (GRADSP). Laminin, by itself, did not affect contractility or proliferation but reduced the effects of PDGF on these parameters. Strong relationships were found between the ECM-induced changes in E(max) in BTSM strips and their proliferative responses in BSTM cells and for E(max) and contractile protein expression. Our results indicate that ECM proteins differentially regulate both phenotype and function of intact ASM.  相似文献   

6.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

7.
We hypothesized that severe hypoxia limits exercise performance via decreased contractility of limb locomotor muscles. Nine male subjects [mean +/- SE maximum O(2) uptake (Vo(2 max)) = 56.5 +/- 2.7 ml x kg(-1) x min(-1)] cycled at > or =90% Vo(2 max) to exhaustion in normoxia [NORM-EXH; inspired O(2) fraction (Fi(O(2))) = 0.21, arterial O(2) saturation (Sp(O(2))) = 93 +/- 1%] and hypoxia (HYPOX-EXH; Fi(O(2)) = 0.13, Sp(O(2)) = 76 +/- 1%). The subjects also exercised in normoxia for a time equal to that achieved in hypoxia (NORM-CTRL; Sp(O(2)) = 96 +/- 1%). Quadriceps twitch force, in response to supramaximal single (nonpotentiated and potentiated 1 Hz) and paired magnetic stimuli of the femoral nerve (10-100 Hz), was assessed pre- and at 2.5, 35, and 70 min postexercise. Hypoxia exacerbated exercise-induced peripheral fatigue, as evidenced by a greater decrease in potentiated twitch force in HYPOX-EXH vs. NORM-CTRL (-39 +/- 4 vs. -24 +/- 3%, P < 0.01). Time to exhaustion was reduced by more than two-thirds in HYPOX-EXH vs. NORM-EXH (4.2 +/- 0.5 vs. 13.4 +/- 0.8 min, P < 0.01); however, peripheral fatigue was not different in HYPOX-EXH vs. NORM-EXH (-34 +/- 4 vs. -39 +/- 4%, P > 0.05). Blood lactate concentration and perceptions of limb discomfort were higher throughout HYPOX-EXH vs. NORM-CTRL but were not different at end-exercise in HYPOX-EXH vs. NORM-EXH. We conclude that severe hypoxia exacerbates peripheral fatigue of limb locomotor muscles and that this effect may contribute, in part, to the early termination of exercise.  相似文献   

8.
Although it is well established that maximal O(2) uptake (Vo(2 max)) declines from adulthood to old age, the role played by alterations in skeletal muscle is unclear. Specifically, because during whole body exercise reductions in convective O(2) delivery to the working muscles from adulthood to old age compromise aerobic performance, this obscures the influence of alterations within the skeletal muscles. We sought to overcome this limitation by using an in situ pump-perfused hindlimb preparation to permit matching of muscle convective O(2) delivery in young adult (8 mo; muscle convective O(2) delivery = 569 +/- 42 micromol O(2) x min(-1) x 100 g(-1)) and late middle-aged (28-30 mo; 539 +/- 62 micromol O(2) x min(-1) x 100 g(-1)) Fischer 344 x Brown Norway F1 hybrid rats. The distal hindlimb muscles were electrically stimulated for 4 min (60 tetani/min), and Vo(2 max) was determined. Vo(2 max) normalized to the contracting muscle mass was 22% lower in the 28- to 30-mo-old (344 +/- 17 micromol O(2). min(-1) x 100 g(-1)) than the 8-mo-old (441 +/- 20 micromol O(2) x min(-1) x 100 g(-1); P < 0.05) rats. The flux through the electron transport chain complexes I-III was 45% lower in homogenates prepared from the plantaris muscles of the older animals. Coincident with these alterations, the tension at Vo(2 max) and lactate efflux were reduced in the 28- to 30-mo-old animals, whereas the percent decline in tension was greater in the 28- to 30-mo-old vs. 8-mo-old animals. Collectively, these results demonstrate that alterations within the skeletal muscles, such as a reduced mitochondrial oxidative capacity, contribute to the reduction in Vo(2 max) with aging.  相似文献   

9.
The impact of colitis on uterine contractility and estrous cycle was investigated after intracolonic administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. Colitis severity was assessed by macroscopic damage scoring (MDS) 4 days after TNBS, and myeloperoxidase (MPO) activity was measured in both colon and uterus of control and colitic rats. Estrous cycle stages were determined by vaginal smears and histology, and uterine contractility was assessed in vitro on longitudinal and circular strips. In control rats, uterine MPO activity varied markedly during the cycle and peaked around estrus. In rats with moderate colitis [MDS < 5, 3.1 +/- 0.2 (mean +/- SE)], uterine MPO decreased by 61% compared with estrus control, without disruption of the cycle. Frequency of spontaneous contractions was reduced by 32% in circular muscle. Contractile responses to KCl and carbachol were not affected, whereas maximal response to oxytocin decreased by 47% in the longitudinal muscle. In rats with severe colitis (MDS > 5, 6.0 +/- 0.2), uterine MPO was reduced by 96% and estrous cycle was disrupted. Spontaneous contractility was impaired in circular strips, and a 39% decrease in the contraction frequency occurred in the longitudinal strips. Circular strips did not contract to KCl or carbachol; however, longitudinal strips had maximal responses to KCl, carbachol, and oxytocin reduced by 36%, 27%, and 46%, respectively. Estrogen replacement protected the uterine responses to carbachol in colitic rats, whereas oxytocin responses remained depressed. These data indicate that colonic inflammation can influence both spontaneous and evoked uterine contractility, in relation to estrous cycle disturbances, impaired estradiol production, and functional alterations of myometrial cells.  相似文献   

10.
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

11.
The effect of warm-up exercise on energy metabolism and muscle glycogenolysis during sprint exercise (Spr) was examined in six fit Standardbred horses exercised at 115% of maximal O(2) consumption (VO(2 max)) until fatigued, 5 min after each of three protocols: 1) no warm-up (NWU); 2) 10 min at 50% of VO(2 max) [low-intensity warm-up (LWU)]; and 3) 7 min at 50% VO(2 max) followed by 45-s intervals at 80, 90, and 100% VO(2 max) [high-intensity warm-up (HWU)]. Warm-up increased (P < 0.0001) muscle temperature (T(m)) at the onset of Spr in LWU (38.3 +/- 0.2 degrees C) and HWU (40.0 +/- 0. 3 degrees C) compared with NWU (36.6 +/- 0.2 degrees C), and the rate of rise in T(m) during Spr was greater in NWU than in LWU and HWU (P < 0.01). Peak VO(2) was higher and O(2) deficit lower (P < 0. 05) when Spr was preceded by warm-up. Rates of muscle glycogenolysis were lower (P < 0.05) in LWU, and rates of blood and muscle lactate accumulation and anaerobic ATP provision during Spr were lower in LWU and HWU compared with NWU. Mean runtime (s) in LWU (173 +/- 10 s) was greater than HWU (142 +/- 11 s) and NWU (124 +/- 4 s) (P < 0. 01). Warm-up was associated with augmentation of aerobic energy contribution to total energy expenditure, decreased glycogenolysis, and longer run time to fatigue during subsequent sprint exercise, with no additional benefit from HWU vs. LWU.  相似文献   

12.
Heart temperature affects left ventricular (LV) function and myocardial metabolism. However, how and whether increasing heart temperature affects LV mechanoenergetics remain unclear. We designed the present study to investigate effects of increased temperature by 5 degrees C from 36 degrees C on LV contractility and energetics. We analyzed the LV contractility index (E(max)) and the relation between the myocardial oxygen consumption (MVO(2)) and the pressure-volume area (PVA; a measure of LV total mechanical energy) in isovolumically contracting isolated canine hearts during normothermia (NT) and hyperthermia (HT). HT reduced E(max) by 38% (P < 0.01) and shortened time to E(max) by 20% (P < 0.05). HT, however, altered neither the slope nor the unloaded MVO(2) of the MVO(2)-PVA relation. HT increased the oxygen cost of contractility (the incremental ratio of unloaded MVO(2) to E(max)) by 49%. When Ca(2+) infusion restored the reduced LV contractility during HT to the NT baseline level, the unloaded MVO(2) in HT exceeded the NT value by 36%. We conclude that HT-induced negative inotropism accompanies an increase in the oxygen cost of contractility.  相似文献   

13.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.  相似文献   

14.
Insulin action in skeletal muscle is enhanced by regular exercise. Whether insulin signaling in human skeletal muscle is affected by habitual exercise is not well understood. Phosphatidylinositol 3-kinase (PI3-kinase) activation is an important step in the insulin-signaling pathway and appears to regulate glucose metabolism via GLUT-4 translocation in skeletal muscle. To examine the effects of regular exercise on PI3-kinase activation, 2-h hyperinsulinemic (40 mU. m(-2). min(-1))-euglycemic (5.0 mM) clamps were performed on eight healthy exercise-trained [24 +/- 1 yr, 71.8 +/- 2.0 kg, maximal O(2) uptake (VO(2 max)) of 56.1 +/- 2.5 ml. kg(-1). min(-1)] and eight healthy sedentary men and women (24 +/- 1 yr, 64.7 +/- 4.4 kg, VO(2 max) of 44.4 +/- 2.7 ml. kg(-1). min(-1)). A [6, 6-(2)H]glucose tracer was used to measure hepatic glucose output. A muscle biopsy was obtained from the vastus lateralis muscle at basal and at 2 h of hyperinsulinemia to measure insulin receptor substrate-1(IRS-1)-associated PI3-kinase activation. Insulin concentrations during hyperinsulinemia were similar for both groups (293 +/- 22 and 311 +/- 22 pM for trained and sedentary, respectively). Insulin-mediated glucose disposal rates (GDR) were greater (P < 0.05) in the exercise-trained compared with the sedentary control group (9.22 +/- 0.95 vs. 6.36 +/- 0.57 mg. kg fat-free mass(-1). min(-1)). Insulin-stimulated PI3-kinase activation was also greater (P < 0.004) in the trained compared with the sedentary group (3.8 +/- 0.5- vs. 1.8 +/- 0.2-fold increase from basal). Endurance capacity (VO(2 max)) was positively correlated with PI3-kinase activation (r = 0.53, P < 0.04). There was no correlation between PI3-kinase and muscle morphology. However, increases in GDR were positively related to PI3-kinase activation (r = 0.60, P < 0.02). We conclude that regular exercise leads to greater insulin-stimulated IRS-1-associated PI3-kinase activation in human skeletal muscle, thus facilitating enhanced insulin-mediated glucose uptake.  相似文献   

15.
There are reports of abnormal pulmonary oxygen uptake (Vo(2)) and deoxygenated hemoglobin ([HHb]) kinetics in individuals with Type 2 diabetes (T2D) below 50 yr of age with disease durations of <5 yr. We examined the Vo(2) and muscle [HHb] kinetics in 12 older T2D patients with extended disease durations (age: 65 ± 5 years; disease duration 9.3 ± 3.8 years) and 12 healthy age-matched control participants (CON; age: 62 ± 6 years). Maximal oxygen uptake (Vo(2max)) was determined via a ramp incremental cycle test and Vo(2) and [HHb] kinetics were determined during subsequent submaximal step exercise. The Vo(2max) was significantly reduced (P < 0.05) in individuals with T2D compared with CON (1.98 ± 0.43 vs. 2.72 ± 0.40 l/min, respectively) but, surprisingly, Vo(2) kinetics was not different in T2D compared with CON (phase II time constant: 43 ± 17 vs. 41 ± 12 s, respectively). The Δ[HHb]/ΔVo(2) was significantly higher in T2D compared with CON (235 ± 99 vs. 135 ± 33 AU·l(-1)·min(-1); P < 0.05). Despite a lower Vo(2max), Vo(2) kinetics is not different in older T2D compared with healthy age-matched control participants. The elevated Δ[HHb]/ΔVo(2) in T2D individuals possibly indicates a compromised muscle blood flow that mandates a greater O(2) extraction during exercise. Longer disease duration may result in adaptations in the O(2) extraction capabilities of individuals with T2D, thereby mitigating the expected age-related slowing of Vo(2) kinetics.  相似文献   

16.
Important sex differences in cardiovascular disease outcomes exist, including conditions of hypertrophic cardiomyopathy and cardiac ischemia. Studies of sex differences in the extent to which load-independent (primary) hypertrophy modulates the response to ischemia-reperfusion (I/R) damage have not been characterized. We have previously described a model of primary genetic cardiac hypertrophy, the hypertrophic heart rat (HHR). In this study the sex differences in HHR cardiac function and responses to I/R [compared to control normal heart rat (NHR)] were investigated ex vivo. The ventricular weight index was markedly increased in HHR female (7.82 +/- 0.49 vs. 4.80 +/- 0.10 mg/g; P < 0.05) and male (5.76 +/- 0.22 vs. 4.62 +/- 0.07 mg/g; P < 0.05) hearts. Female hearts of both strains exhibited a reduced basal contractility compared with strain-matched males [maximum first derivative of pressure (dP/dt(max)): NHR, 4,036 +/- 171 vs. 4,258 +/- 152 mmHg/s; and HHR, 3,974 +/- 160 vs. 4,540 +/- 259 mmHg/s; P < 0.05]. HHR hearts were more susceptible to I/R (I = 25 min, and R = 30 min) injury than NHR hearts (decreased functional recovery, and increased lactate dehydrogenase efflux). Female NHR hearts exhibited a significantly greater recovery (dP/dt(max)) post-I/R relative to male NHR (95.0 +/- 12.2% vs. 60.5 +/- 9.4%), a resistance to postischemic dysfunction not evident in female HHR (29.0 +/- 5.6% vs. 25.9 +/- 6.3%). Ventricular fibrillation was suppressed, and expression levels of Akt and ERK1/2 were selectively elevated in female NHR hearts. Thus the occurrence of load-independent primary cardiac hypertrophy undermines the intrinsic resistance of female hearts to I/R insult, with the observed abrogation of endogenous cardioprotective signaling pathways consistent with a potential mechanistic role in this loss of protection.  相似文献   

17.
In gastrointestinal conditions such as bowel obstruction, pseudo-obstruction, and idiopathic megacolon, the lumen of affected bowel segments is distended and its motility function impaired. Our hypothesis is that mechanical stretch of the distended segments alters gene expression of cyclooxygenase-2 (COX-2), which impairs motility function. Partial obstruction was induced with a silicon band in the distal colon of rats for up to 7 days, and wild-type and COX-2 gene-deficient mice for 4 days. Mechanical stretch was mimicked in vitro in colonic circular muscle strips and in primary culture of colonic circular smooth muscle cells (SMC) with a Flexercell system. The rat colonic circular muscle contractility was significantly decreased in the distended segment oral to obstruction, but not in the aboral segment. This change started as early as day 1 and persisted for at least 7 days after obstruction. The expression of COX-2 mRNA and protein increased dramatically also in the oral, but not aboral, segment. The upregulation of COX-2 expression started at 12 h and the effect persisted for 7 days. At 24 h after obstruction, the COX-2 mRNA level in the oral segment increased 26-fold compared with controls. This was not accompanied by any significant increase of myeloperoxidase or inflammatory cytokines. Immunohistochemical studies showed that COX-2 was selectively induced in the colonic SMC. In vitro stretch of colonic muscle strips or cultured SMC drastically induced COX-2 expression. Incubation of circular muscle strips from obstructed segment with COX-2 inhibitor NS-398 restored the contractility. The impairment of muscle contractility in obstructed colon was attenuated in the COX-2 gene-deficient mice. In conclusion, mechanical stretch in obstruction induces marked expression of COX-2 in the colonic SMC, and stretch-induced COX-2 plays a critical role in the suppression of smooth muscle contractility in bowel obstruction.  相似文献   

18.
In this study, we hypothesized that athletes involved in 5-6 months of sprint-type training would display higher levels of proteins and processes involved in muscle energy supply and utilization. Tissue was sampled from the vastus lateralis of 13 elite ice hockey players (peak oxygen consumption = 51.8 ± 1.3 mL·kg(-1)·min(-1); mean ± standard error) at the end of a season (POST) and compared with samples from 8 controls (peak oxygen consumption = 45.5 ± 1.4 mL·kg(-1)·min(-1)) (CON). Compared with CON, higher activities were observed in POST (p < 0.05) only for succinic dehydrogenase (3.32 ± 0.16 mol·(mg protein)(-1)·min(-1) vs. 4.10 ± 0.11 mol·(mg protein)(-1)·min(-1)) and hexokinase (0.73 ± 0.05 mol·(mg protein)(-1)·min(-1) vs. 0.90 ± 0.05mol·(mg protein)(-1)·min(-1)) but not for phosphorylase, phosphofructokinase, and creatine phosphokinase. No differences were found in Na(+),K(+)-ATPase concentration (β(max): 262 ± 36 pmol·(g wet weight)(-1) vs. 275 ± 27 pmol·(g wet weight)(-1)) and the maximal activity of the sarcoplasmic reticulum Ca(2+)-ATPase (98.1 ± 6.1 μmol·(g protein)(-1)·min(-1) vs. 102 ± 3.3 μmol·(g protein)(-1)·min(-1)). Cross-sectional area was lower (p < 0.05) in POST but only for the type IIA fibres (6312 ± 684 μm(2) vs. 5512 ± 335 μm(2)), while the number of capillary counts per fibre and the capillary to fibre area ratio were generally higher (p < 0.05). These findings suggest that elite trained ice hockey players display elevations only in support of glucose-based aerobic metabolism that occur in the absence of alterations in excitation-contraction processes.  相似文献   

19.
Acid-induced esophagitis is associated with sustained longitudinal smooth muscle (LSM) contraction and consequent esophageal shortening. In addition, LSM strips from opossums with esophagitis are hyper-responsive, while the circular smooth muscle (CSM) contractility is impaired. To determine the origin of these changes, studies were performed on esophageal smooth muscle cells isolated from opossum esophagi perfused intraluminally on 3 consecutive days with either saline (control; n = 8) or HCl (n = 9). CSM and LSM cells, obtained by enzymatic digestion, were exposed to various concentrations of carbachol (CCh) and fixed. CCh induced concentration-dependent contraction of both LSM and CSM cells. CCh-induced LSM cell contraction was not different between control and esophagitis animals; however, there was marked attenuation in the CCh-induced contraction of CSM cells from esophagitis animals. Morphological studies revealed significant hypertrophy of the CSM cells. These findings suggest that impaired CSM contractility can be attributed at least in part to alterations to the CSM cell itself. In contrast, hyper-contractility demonstrated in LSM strips is likely related to factors in the surrounding tissue.  相似文献   

20.
Previous studies showed that long-term hypoxia (LTH) during pregnancy alters myometrial contractility. The present study was designed to test the hypothesis that LTH during pregnancy suppresses myometrial contractility in sheep by affecting the calcium signaling cascade. Pregnant sheep were maintained at high altitude (3820 m) from Day 30 to Day 139 of gestation, when the animals were killed for collection of myometrial tissue. Tissue was also collected from age-matched, normoxic controls. Circular and longitudinal layers were separated, and strips from each layer were mounted in a muscle bath. After pretreatment with 10(-8) M oxytocin, the strips were exposed to increasing half- or quarter-log doses of nifedipine (L-type calcium-channel blocker), ruthenium red, ryanodine (blockers of inositol 1,4,5-trisphosphate-insensitive calcium stores), or 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC; phospholipase C inhibitor). Area under the contraction curve was analyzed, and pD(2) (log of concentration yielding 50% of maximum response) values and maximum relaxation responses were calculated. The maximum relaxation response to nifedipine was increased in both longitudinal (P < 0.01) and circular (P < 0.05) myometrial layers from LTH compared to control tissue, whereas no difference was observed in response to ruthenium red or ryanodine. The maximum relaxation response to NCDC was lower in the LTH circular layer (P < 0.05). Together, these data are indicative of an increase in the dependence of ovine uterine smooth muscle on extracellular calcium influx through the L-type, voltage-gated calcium channels following LTH. This appears to occur not through an increase in L-type calcium channels but, rather, through a possible decline in importance of the oxytocin-induced, phospholipase C-mediated pathway, resulting in a greater proportion of extracellular calcium contributing to contraction. Layer-dependent differences also exist between the circular and longitudinal myometrium in response to phospholipase C inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号