首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Waldman AS  Tran H  Goldsmith EC  Resnick MA 《Genetics》1999,153(4):1873-1883
Certain DNA sequence motifs and structures can promote genomic instability. We have explored instability induced in mouse cells by long inverted repeats (LIRs). A cassette was constructed containing a herpes simplex virus thymidine kinase (tk) gene into which was inserted an LIR composed of two inverted copies of a 1.1-kb yeast URA3 gene sequence separated by a 200-bp spacer sequence. The tk gene was introduced into the genome of mouse Ltk(-) fibroblasts either by itself or in conjunction with a closely linked tk gene that was disrupted by an 8-bp XhoI linker insertion; rates of intrachromosomal homologous recombination between the markers were determined. Recombination between the two tk alleles was stimulated 5-fold by the LIR, as compared to a long direct repeat (LDR) insert, resulting in nearly 10(-5) events per cell per generation. Of the tk(+) segregants recovered from LIR-containing cell lines, 14% arose from gene conversions that eliminated the LIR, as compared to 3% of the tk(+) segregants from LDR cell lines, corresponding to a >20-fold increase in deletions at the LIR hotspot. Thus, an LIR, which is a common motif in mammalian genomes, is at risk for the stimulation of homologous recombination and possibly other genetic rearrangements.  相似文献   

2.
3.
4.
Homo!ogy-directed repair(HDR)is one of two major DNA repair pathways to mend the double-strand breaks(DSBs)formed in the genome(Liang et al.,1998;Pardo et al.,2009).Although less efficient compared with another DNA repair pathway,nonhomologous end joining(NHEJ),HDR is a type of precise repair to restore DNA damage and sustain genomic stability(Pardo et al.,2009;Ceccaldi et al.,2016).By contrast,NHEJ usually introduces mutations into the repaired site,thus probably harming the genomic integrity(Lieber et al.,2003).The error-free property enables HDR to be harnessed to correct a faulty mutation for therapeutic purpose in cells or in the body(Wu et al.,2013).In add让ion,HDR possesses great potential in the generation of genome-edited animals with precise genetic modifications,such as point mutation,DNA replacement,and DNA insertion in a specific genomic site(Wang et al.,2013).However,the low repair frequency mediated by HDR significantly limits让s application for efficient gene correction or establishment of various genetically modified animal models.Currently,multiple site-specific endonucleases have emerged as highly efficient tools to create targeted DSBs and markedly promote subsequent DNA repair either via HDR or NHEJ(Gaj et al.,2013).Nonetheless,the HDR-mediated modifications following the cleavage of engineering nucleases are still inefficient,usually with an efficiency less than 20%in cultured mammalian cells and embryos(Mali et al..2013;Wang et al.,2013;Yang et al.,2013).  相似文献   

5.
6.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

7.
Disruption of the gene encoding RAD51, the protein that catalyzes strand exchange during homologous recombination, leads to the accumulation of chromosome breaks and lethality in vertebrate cells. As RAD51 is implicated in BRCA1- and BRCA2-mediated tumor suppression as well as cellular viability, we have begun a functional analysis of a defined RAD51 mutation in mammalian cells. By using a dominant negative approach, we generated a mouse embryonic stem cell line that expresses an ATP hydrolysis-defective RAD51 protein, hRAD51-K133R, at comparable levels to the endogenous wild-type RAD51 protein, whose expression is retained in these cells. We found that these cells have increased sensitivity to the DNA-damaging agents mitomycin C and ionizing radiation and also exhibit a decreased rate of spontaneous sister-chromatid exchange. By using a reporter for the repair of a single chromosomal double-strand break, we also found that expression of the hRAD51-K133R protein specifically inhibits homology-directed double-strand break repair. Furthermore, expression of a BRC repeat from BRCA2, a peptide inhibitor of an early step necessary for strand exchange, exacerbates the inhibition of homology-directed repair in the hRAD51-K133R expressing cell line. Thus, ATP hydrolysis by RAD51 has a key role in various types of DNA repair in mammalian cells.  相似文献   

8.
9.
10.
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.  相似文献   

11.
The RAD10 gene of Saccharomyces cerevisiae is required for nucleotide excision repair of DNA. Expression of RAD10 mRNA and Rad10 protein was demonstrated in Chinese hamster ovary (CHO) cells containing amplified copies of the gene, and RAD10 mRNA was also detected in stable transfectants without gene amplification. Following transfection with the RAD10 gene, three independently isolated excision repair-defective CHO cell lines from the same genetic complementation group (complementation group 2) showed partial complementation of sensitivity to killing by UV radiation and to the DNA cross-linking agent mitomycin C. These results were not observed when RAD10 was introduced into excision repair-defective CHO cell lines from other genetic complementation groups, nor when the yeast RAD3 gene was expressed in cells from genetic complementation group 2. Enhanced UV resistance in cells carrying the RAD10 gene was accompanied by partial reactivation of the plasmid-borne chloramphenicol acetyltransferase (cat) gene following its inactivation by UV radiation. The phenotype of CHO cells from genetic complementation group 2 is also specifically complemented by the human ERCC1 gene, and the ERCC1 and RAD10 genes have similar amino acid sequences. The present experiments therefore indicate that the structural homology between the yeast Rad10 and human Ercc1 polypeptides is reflected at a functional level, and suggest that nucleotide excision repair proteins are conserved in eukaryotes.  相似文献   

12.
DNA damage, homology-directed repair, and DNA methylation   总被引:1,自引:0,他引:1       下载免费PDF全文
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.  相似文献   

13.
14.
15.
Postreplication repair of DNA in mammalian cells   总被引:2,自引:0,他引:2  
A R Lehmann 《Life sciences》1974,15(12):2005-2016
  相似文献   

16.
Mammalian germ cells encounter several types of DNA damage. This damage is almost completely repaired in a short?period of time to provide the maintenance of genomic integrity. The main repair mechanisms operating in mammalian germline cells are: nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), DNA double strand break repair (DSBR), and post replication repair (PRR). Currently, there are relatively few publications that summarize basic information and new findings?on DNA repair mechanisms used in mammalian germ cells. In the present article, we review the studies that discuss repair mechanisms operating in the female and male germ cells. We then survey some of the recent discoveries made in this field.  相似文献   

17.
We studied the formation of double strand breaks (DSBs) as intermediates in the repair of DNA interstrand crosslinks (ICLs) by homologous recombination (HR). The plasmid EGFP-N1 was crosslinked with trioxsalen to give one ICL per plasmid on average. HeLa cells were transfected with the crosslinked plasmids and the ICL repair was monitored by following the restoration of the GFP expression. It was accompanied by gamma-H2AX foci formation suggesting that DSBs were formed during the process. However, the same amount of gamma-H2AX foci was observed when cells were transfected with native plasmid, which indicated that gamma-H2AX foci appearance could not be used to determine the amount of DSBs connected with the ICL repair in this system. For this reason we further monitored the DSB formation by determining the amount of linearized plasmids, since having one crosslink per plasmid on average, any ICL-driven DSB formation would lead to plasmid linearization. Native and crosslinked plasmids were incubated in repair-competent cell-free extracts from G1 and S phase HeLa cells. Although a considerable part of the ICLs was repaired, no linearization of the plasmids was observed in the extracts, which was interpreted that DSBs were not formed as intermediates in the process of ICL repair. In another set of experiments HR-proficient HeLa and HR-deficient irs3 cells were transfected with native and crosslinked plasmids, and 6 h and 12 h later the plasmid DNA was isolated and analyzed by electrophoresis. The same amount of linear plasmid molecules was observed in both cell lines, regardless of whether they were transfected with native or crosslinked pEGFP-N1, which further confirmed that DSB formation was not an obligatory step in the process of ICL repair by HR.  相似文献   

18.
DNA damage by agents crosslinking the strands presents a formidable challenge to the cell to repair for survival and to repair accurately for maintenance of genetic information. It appears that repair of DNA crosslinks occurs in a path involving double strand breaks (DSBs) in the DNA. Mammalian cells have multiple systems involved in the repair response to such damage, including the Fanconi anemia pathway that appears to be directly involved, although the mechanisms and site of action remain elusive. A particular finding relating to deficiency of the Fanconi anemia pathway is the observation of chromosomal radial formations after ICL damage. The basis of formation of such chromosomal aberrations is unknown although they appear secondarily to DSBs. Here we review the processes involved in response to DNA interstrand crosslinks which might lead to radial formation and the role of the nucleotide excision repair gene, ERCC1, which is required for a normal response, not just to DNA crosslinks, but also for DSBs at collapsed replication forks caused by substrate depletion. J. Cell. Physiol. 220: 569–573, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号