首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveSenescence of vascular cells contributes to the development of cardiovascular diseases and the overall aging. This study was undertaken to investigate the effects of resveratrol (Res) on amelioration of vascular cell aging and the role of SIRT1/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathway.Methods and ResultsAdult male Wistar rats were treated with a high-fat/sucrose diet (HFS) in the presence or absence of Res for 3 months. HFS and in vitro treatment with high glucose increased the senescence cells and reactive oxygen species production in rat aorta and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Res protected against HFS- or high-glucose-induced increase in NADPH oxidase p47phox expression and decrease in SIRT1 level. Apocynin, a NADPH oxidase inhibitor, down-regulated p47phox protein expression, but had no influence on SIRT1 protein; sirtinol, a SIRT1 inhibitor, aggravated the decrease in SIRT1 protein level and the increase in p47phox protein expression induced by high glucose.ConclusionOur studies suggested that Res was able to reverse the senescence process in aorta induced by HFS in rats or induced by the exposure to high glucose in cultured BAECs. The underlying mechanism is at least SIRT1/NADPH oxidase pathway dependent.  相似文献   

2.
3.
Asai S  Ohta K  Yoshioka H 《The Plant cell》2008,20(5):1390-1406
Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/NTF4 and MEK1-NTF6 participate in the regulation of the radical burst. NO generation was induced by conditional activation of SIPK/NTF4, but not by NTF6, in Nicotiana benthamiana leaves. INF1- and SIPK/NTF4-mediated NO bursts were compromised by the knockdown of NOA1. However, ROS generation was induced by either SIPK/NTF4 or NTF6. INF1- and MAPK-mediated ROS generation was eliminated by silencing Respiratory Burst Oxidase Homolog B (RBOHB), an inducible form of the NADPH oxidase. INF1-induced expression of RBOHB was compromised in SIPK/NTF4/NTF6-silenced leaves. These results indicated that INF1 regulates NOA1-mediated NO and RBOHB-dependent ROS generation through MAPK cascades. NOA1 silencing induced high susceptibility to Colletotrichum orbiculare but not to P. infestans; conversely, RBOHB silencing decreased resistance to P. infestans but not to C. orbiculare. These results indicate that the effects of the radical burst on the defense response appear to be diverse in plant-pathogen interactions.  相似文献   

4.
Recent studies have identified the importance of proinflammatory mediators in regulating cardiac structure in health and disease. Recent studies suggest that cytokines that are expressed within the myocardium in response to a environmental injury, namely tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1) and the interleukin-6 (IL-6) family of cytokines play an important role in initiating and integrating homeostatic responses within the heart. However, these "stress-activated" cytokines all have the potential to produce cardiac decompensation when expressed at sufficiently high concentrations. Indeed, there is now a growing appreciation that these molecules may play an important role in mediating disease progression in the failing heart. The growing appreciation of the pathophysiological consequences of sustained expression of proinflammatory mediators in pre-clinical and clinical heart failure models culminated in a series of multicenter clinical trials that utilized "targeted" approaches to neutralize tumor necrosis factor (TNF) in patients with moderate to advanced heart failure. However, these targeted approaches have resulted in worsening heart failure, thereby raising a number of important questions about what role, if any, proinflammatory cytokines play in the pathogenesis of heart failure. This review will summarize the tremendous growth of knowledge that has taken place in this field, with a focus on what we have learned from the negative clinical trials, as well as the potential direction of future research in this area.  相似文献   

5.
Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.  相似文献   

6.
Protective roles for ATM in cellular response to oxidative stress   总被引:7,自引:0,他引:7  
Takao N  Li Y  Yamamoto K 《FEBS letters》2000,472(1):133-136
ATM (ataxia telangiectasia mutated), the gene mutated in ataxia telangiectasia, is related to a family of large phosphatidylinositol 3-kinase domain-containing proteins involved in cell cycle control and DNA repair. We found that ATM(-/-) DT40 cells were more susceptible than wild-type cells to apoptosis induced not only by ionizing radiation and bleomycin but also by non-DNA-damaging apoptotic stimuli such as C(2)-ceramide. Furthermore, the apoptosis induced by C(2)-ceramide and H(2)O(2) was blocked by anti-oxidants, indicating that the ATM(-/-) DT40 cells had a heightened susceptibility to apoptosis induced by reactive oxygen intermediates (ROI), presumably due to defective ROI-detoxification activities. In support of this hypothesis, we found that more ROI were generated in ATM(-/-) DT40 cells than in wild-type cells, following treatment with the above apoptotic stimuli. These results indicate that ATM plays important roles in the maintenance of the cell homeostasis in response to oxidative damage.  相似文献   

7.
8.
Background and objective Angiotensin II type 1 receptor (AT1R) blockade reduces vascular oxidative stress but whether myocardial oxidative stress represents a mechanism for the beneficial effect of AT1R blockade in heart failure is unclear. Furthermore, the impact of AT1R blockade on the expression of angiotensin II receptors in heart failure has not been well documented. Accordingly, we examined the impact of the AT1R blocker candesartan on hemodynamics, left ventricular (LV) remodeling (echocardiography), oxidative stress, and tissue expression of AT1Rs and angiotensin II type 2 receptors (AT2Rs) in a canine model of pacing-induced heart failure. Methods and results Animals were randomized to rapid right ventricular-pacing (250 beats/min for 3 weeks) to severe heart failure and treated with candesartan (10 mg/kg daily, n = 8) or placebo (n = 8) from day 3 onwards, or no pacing (sham, n = 7). Candesartan significantly reduced mean pulmonary arterial and LV diastolic pressure, LV end-diastolic and end-systolic volume and ascites, increased cardiac output, dP/dt, and ejection fraction, while reversing the marked increase in aldehydes, a marker of oxidative stress, observed in the placebo group. Although candesartan did not alter LV AT1R protein expression compared to placebo or sham, it reversed the decrease in AT2R protein observed in the placebo group. Conclusion Our results indicate that in the pacing model of heart failure, chronic AT1R blockade attenuates hemodynamic deterioration and limits LV remodeling and dysfunction, in part by reversing oxidative stress and AT2R downregulation.  相似文献   

9.
Endoplasmic reticulum (ER)-induced apoptosis and oxidative stress contribute to several chronic disease processes, yet molecular and cellular mechanisms linking ER stress and oxidative stress in the setting of apoptosis are poorly understood and infrequently explored in vivo. In this paper, we focus on a previously elucidated ER stress-apoptosis pathway whose molecular components have been identified and documented to cause apoptosis in vivo. We now show that nicotinamide adenine dinucleotide phosphate reduced oxidase (NOX) and NOX-mediated oxidative stress are induced by this pathway and that apoptosis is blocked by both genetic deletion of the NOX subunit NOX2 and by the antioxidant N-acetylcysteine. Unexpectedly, NOX and oxidative stress further amplify CCAAT/enhancer binding protein homologous protein (CHOP) induction through activation of the double-stranded RNA-dependent protein kinase (PKR). In vivo, NOX2 deficiency protects ER-stressed mice from renal cell CHOP induction and apoptosis and prevents renal dysfunction. These data provide new insight into how ER stress, oxidative stress, and PKR activation can be integrated to induce apoptosis in a pathophysiologically relevant manner.  相似文献   

10.
11.
The study of reactive oxygen species (ROS) and oxidative stress remains a very active area of biological research, particularly in relation to cellular signaling and the role of ROS in disease. In the cerebral circulation, oxidative stress occurs in diverse forms of disease and with aging. Within the vessel wall, ROS produce complex structural and functional changes that have broad implications for regulation of cerebral perfusion and permeability of the blood-brain barrier. These oxidative-stress-induced changes are thought to contribute to the progression of cerebrovascular disease. Here, we highlight recent findings in relation to oxidative stress in the cerebral vasculature, with an emphasis on the emerging role for NADPH oxidases as a source of ROS and the role of ROS in models of disease.  相似文献   

12.
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2–Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.  相似文献   

13.
Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay the progression of heart disease.  相似文献   

14.
15.
16.
Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g L-1; 1X, 15.4 g L-1; 2X, 30.8 g L-1) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress. [BMB Reports 2013; 46(2): 86-91]  相似文献   

17.
Chronic alcohol abuse is a comorbid variable of acute respiratory distress syndrome. Previous studies showed that, in the lung, chronic alcohol consumption increased oxidative stress and impaired alveolar macrophage (AM) function. NADPH oxidases (Noxes) are the main source of reactive oxygen species in AMs. Therefore, we hypothesized that chronic alcohol consumption increases AM oxidant stress through modulation of Nox1, Nox2, and Nox4 expression. AMs were isolated from male C57BL/6J mice, aged 8-10 wk, which were treated with or without ethanol in drinking water (20% w/v, 12 wk). MH-S cells, a mouse AM cell line, were treated with or without ethanol (0.08%, 3 d) for in vitro studies. Selected cells were treated with apocynin (300 μM), a Nox1 and Nox2 complex formation inhibitor, or were transfected with Nox small interfering RNAs (20-35 nM), before ethanol exposure. Human AMs were isolated from alcoholic and control patients' bronchoalveolar lavage fluid. Nox mRNA levels (quantitative RT-PCR), protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red analysis), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol increased Nox expression and oxidative stress in mouse AMs in vivo and in vitro. Experiments using apocynin and Nox small interfering RNAs demonstrated that ethanol-induced Nox4 expression, oxidative stress, and AM dysfunction were modulated through Nox1 and Nox2 upregulation. Further, Nox1, Nox2, and Nox4 protein levels were augmented in human AMs from alcoholic patients compared with control subjects. Ethanol induces AM oxidative stress initially through upregulation of Nox1 and Nox2 with downstream Nox4 upregulation and subsequent impairment of AM function.  相似文献   

18.
Enhanced monocyte adhesion to endothelial cells is an early event in atherogenesis. It has been shown that C‐reactive protein (CRP) plays a key role in atherogenesis. Here, we investigated the effects of CRP on monocyte‐endothelial cell adhesion and tested the hypothesis that NADPH oxidase (NOX)‐mediated oxidative stress might play a key role in CRP‐induced monocyte‐endothelial cell adhesion. Firstly, 36 patients with carotid intima‐media thickness (IMT) incrassation and 34 controls were enrolled in this study. The levels of glucose, lipids, CRP, monocyte chemotractant protein (MCP‐1), malondialdehyde (MDA), and protein carbonylation were analyzed. The results showed that carotid IMT was associated with abnormal lipid metabolism, including elevated CRP, triglycerides (TG) (P < 0.01) and decreased high density lipoprotein (HDL) level (P < 0.05). The levels of CRP and MCP‐1 in patients with carotid IMT incrassation were increased compared with the controls (P < 0.01). Moreover, patients with carotid IMT incrassation displayed enhanced MDA and protein carbonylation levels (P < 0.01), accompanied by activation and up‐regulation of NOX in monocytes (P < 0.05) compared with the controls. The monocytes isolated from five healthy donors were used for in vitro experiments. Reactive oxygen species (ROS) production and NOX expression in monocytes were examined. The results also indicated that CRP could promote the adhesion of monocyte‐endothelial cell by up‐regulation of MCP‐1 expression (P < 0.05). Importantly, NFκ B and p38 MAPK signaling pathways, which were activated by NOX‐derived ROS, were involved in CRP‐induced monocyte‐endothelial cell adhesion and up‐regulation of MCP‐1 expression. These data suggested that CRP could promote the adhesion of monocytes to endothelial cells via NOX‐mediated oxidative stress. J. Cell. Biochem. 113: 857–867, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
20.
Tumor invasion is paradigmatic of the complex interactions connecting a carcinoma with its environment, and a reflex of the cellular and molecular heterogeneity that defines the initiation of dissemination and metastasis. The hostile situation generated by a growing carcinoma and a reactive stroma is at the basis of the promotion of carcinoma invasion and metastasis, with oxidative stress emerging as a main player in the acquisition of an aggressive tumor phenotype. In this review, we present this complex scenario with a focus on the contribution of the reactive environment and the oxidative stress to the cellular and molecular events associated with carcinoma invasion and metastasis. We also discuss the potential of oxidative stress as a source of biomarkers of advance disease, and as supplier of a therapeutic armamentarium against the initial steps of metastatic dissemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号