首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu K  Jiao S  Yao W  Xie E  Tang B  Wang C 《Chirality》2012,24(8):646-651
The triazine-based bisbinaphthyl crown ethers oxacalix[2]arene[2]bisbinaphthes R-1, R-2, R-3 and S-1, S-2, S-3 were synthesized. The interactions of these compounds with various α-aminocarboxylic acid anions were studied. The crown ethers were found to carry out highly enantioselective fluorescent recognition of α-aminocarboxylic acid anions. It is observed that within a certain concentration range, one enantiomer of the chiral α-aminocarboxylic acid anions can increase the fluorescence intensity of the crown ethers by fivefold to sixfold, whereas the other enantiomer scarcely enhances the fluorescence. Such unusually high enantioselective responses make these crown ethers very attractive as fluorescent sensors in determining the enantiomeric composition of α-aminocarboxylic acid anions.  相似文献   

2.
3.
A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT14) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure–activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 μM) and antiamoebic (NT2Pd, IC50 of 0.6 μM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells.  相似文献   

4.
Geometry optimizations of tetraamino-tert-butylthiacalix[4]arene (tatbtc4a) and tetraamino-tert-butylcalix[4]arene (tatbc4a) complexes with acetate, oxalate, malonate, succinate, glutarate, adipate, and pimelate were carried out using the integrated MO:MO method. Thermodynamic quantities, preorganization energies and complexation energies of these complexes were obtained at the ONIOM(B3LYP/6-31G(d):AM1) level of theory. The relative stabilities of the tatbtc4a and tatbc4a complexes with carboxylate guests are reported. The complexes tatbtc4a/malonate and tatbc4a/oxalate were found to be the most stable species. The selectivity of the tatbtc4a receptor toward to malonate with respect to oxalate, in terms of selectivity coefficient, is 9.90×102. Figure Atom labeling of tatbtc4a/oxalate complex as a representative of host-guest system.  相似文献   

5.
The synthesis and characterization of a number of organometallic ruthenium(II) complexes containing a series of bidentate thiosemicarbazone ligands derived from piperonal is reported. The structure of compounds have been confirmed by spectroscopic analysis (IR and NMR) as well as X-ray crystallographic analysis of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl (4) (pPhTSC is piperonal-N(4)-phenylthiosemicarbazone). The interaction of the complexes ([(η6-p-cymene)Ru(pEtTSC)Cl]Cl) (3) (pEtTSC is piperonal-N(4)-ethylthiosemicarbazone) and 4 with calf thymus DNA, human serum albumin (HSA) and pBR322 plasmid DNA were studied by spectroscopic, gel electrophoresis and hydrodynamic methods. The apparent binding constant for the interaction with DNA was determined to be 3.97 × 103 M− 1 and 4.07 × 103 M− 1 at 293 K for 3 and 4 respectively. The complexes bind strongly to HSA with binding constants of 2.94 × 104 M− 1 and 12.2 × 104 M− 1 at 296 K for 3 and 4 respectively. The in vitro anticancer activity of 3 and 4 has been evaluated against two human colon cancer cell line (HCT-116 and Caco-2) with IC50 values in the range of 26-150 μM. Both 3 and 4 show good activity as a catalytic inhibitor of human topoisomerase II at concentrations as low as 20 μM. The proficiency of 3 and 4 to act as antibacterial agents was also evaluated against six pathogenic bacterial strains with the best activity seen against Gram-positive strains.  相似文献   

6.
Abstract

Nucleophilic substitution reactions of 4-azolyl-1 β-P-D-ribofuranosylpyrimidin-2(1H)-one and 6-azolyl-9-β-D-ribofuranosyl-9H-purine derivatives, which were converted from uridine and inosine, with [15N]phthalimide in the presence of triethylamine or DBU gave N 4-phthaloyl[4-15N]cytidine and N 6-phthaloyl[6-15N]- adenosine derivatives, respectively, in high yields. Similar reactions of those azolyl derivatives with succinimide afforded N 4-succinylcytidine and N 6-succinyladenosine derivatives in high yields. The corresponding 2′-deoxyribonucleosides were also synthesized efficiently through the same procedure.

  相似文献   

7.
MHC-II molecules bind a single peptide in their groove. Here, the authors summarise evidence that a second peptide could bind transiently to MHC-II molecules outside the groove and have an allosteric effect on peptide-MHC-II complex formation. This effect could modulate, after the antigen processing, the selection of the peptide subset presented by MHC-II molecules to the helper CD4 T cells, which regulate the specific immune response.  相似文献   

8.
Enantioselective liquid–liquid extraction of homophenylalanine (Hph) enantiomers was investigated with metal-BINAP complexes as enantioselective extractants. The metal complexes were synthesized by the complexation of (s)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthalene (BINAP) with different central ions, among which, copper(I) complex allowed the separation of the Hph enantiomers with the highest operational selectivity. Efficiency of the extraction depends, often strongly, on a number of process variables, including types of organic solvents, pH of the aqueous phase, concentration of host and substrate, and temperature. In order to better understand the extraction process, equilibrium of the system were modeled by a homogeneous reaction model and an interfacial reaction model, respectively. Important parameters required by the modeling, such as complexation equilibrium constant and physical distribution coefficients were determined experimentally. When coupled with the parameters, extraction performance can be predicted by the models. Comparison between the experimental values and the model predictions indicates that the homogeneous reaction model can predict more accurately. By modeling and experiment, an optimal extraction condition concerning pH of 8 and host concentration of 2 mmol/L was obtained with high enantioselective (α) of 1.837 and performance factor (pf) of 0.086.  相似文献   

9.
10.
A series of acetato complexes of molybdenum(V), based on the singly metal–metal bonded {Mo2O4}2+ structural fragment, has been prepared. A dinuclear (PyH)3[Mo2O4Cl4(OOCCH3)] · CH3CN (1) (PyH+ = pyridinium cation, C5H5NH+) was obtained upon the reaction of (PyH)5[MoOCl4(H2O)]3Cl2 with the equimolar solution of pyridine and acetic acid in acetonitrile at ambient conditions. The acetato ligand in 1 is coordinated to a pair of molybdenum atoms in a synsyn bidentate bridging manner. (PyH)n[MoOBr4]n afforded in an analogous synthetic procedure a tetranuclear cluster, [Mo4O8(OOCCH3)3(OH)Py4] · 1/2CH 3CN · 1/2H2O (3), with a novel core which may be envisioned as the acetate- and hydroxide-assisted assembly of {Mo2O4}2+ building blocks. Its structure is presented in terms of known tetranuclear clusters which are also composed of two {Mo2O4}2+ units. The acetato ligands in 3 adopted apart from bidentate bridging binding modes also a monodentate one. Partial substitution of chlorido ligands in (PyH)3[Mo2O4Cl4(OOCCH3)] · CH3CN (1) with pyridine resulted in a neutral [Mo2O4Cl(OOCCH3)Py3] · PriOH · Py (2) which retained the original acetate coordination. The title compounds were fully characterized by X-ray diffraction studies and infrared vibrational spectroscopy.  相似文献   

11.
The electron paramagnetic resonance (EPR) spectrum from the [4Fe–4S]3+ cluster in several high-potential iron–sulfur proteins (HiPIPs) is complex: it is not the pattern of a single, isolated S=1/2 system. Multifrequency EPR from 9 to 130 GHz reveals that the apparent peak positions (g values) are frequency-independent: the spectrum is dominated by the Zeeman interaction plus g-strain broadening. The spectra taken at frequencies above the X-band are increasingly sensitive to rapid-passage effects; therefore, the X-band data, which are slightly additionally broadened by dipolar interaction, were used for quantitative spectral analysis. For a single geometrical [4Fe–4S]3+ structure the (Fe–Fe)5+ mixed-valence dimer can be assigned in six different ways to a pair of iron ions, and this defines six valence isomers. Systematic multicomponent g-strain simulation shows that the [4Fe–4S]3+ paramagnets in seven HiPIPs from different bacteria each consist of three to four discernible species, and these are assigned to valence isomers of the clusters. This interpretation builds on previous EPR analyzes of [4Fe–4S]3+ model compounds, and it constitutes a high-resolution extension of the current literature model, proposed from paramagnetic NMR studies.  相似文献   

12.
The radiosynthesis and radiopharmacological evaluation of 3-[4′-[18F]fluorobenzylidene]indolin-2-one, a derivative of tyrosine kinase inhibitor SU5416, is described. The radiosynthesis was accomplished by Knoevenagel condensation of 4-[18F]fluorobenzaldehyde with oxindole in a remotely controlled synthesis module. The reaction conditions were optimized through screening the influence of different bases on the radiochemical yield. The radiotracer was obtained after a two-step labelling procedure in 4% decay-corrected radiochemical yield at a specific activity of 48–61 GBq/μmol within 90 min. The radiochemical purity after semi-preparative HPLC purification exceeded 98%.The biodistribution was studied in Wistar rats. After distribution the radiotracer was rapidly accumulated in the adrenals, liver and kidneys, however, it was cleared from these and the most other organs. Only the adipose tissue remained the activity over 60 min. Unexpected high transient uptake was observed in the brain, pancreas, heart and lung. The fast clearance of 3-[4′-[18F]fluorobenzylidene]indolin-2-one was caused by excretion, approximately one half each was renal and biliary excreted and the other part cleared by metabolic processes. In arterial blood plasma two more polar metabolites were found by radio-HPLC. After 20 min post-injection, only 12% of intact radiotracer has been detected. Consequently, in small animal PET studies with FaDu tumour bearing mice no specific uptake in the tumours could be observed.  相似文献   

13.
In order to obtain rigid σ1 receptor ligands with defined orientation of pharmacophoric elements, the azapropellane scaffold was chosen. Schmidt rearrangement of propellan-8-ones 6 and 10 provided 3-azapropellan-4-ones 7 and 11. Benzylation of the secondary lactams 7 and 11 followed by LiAlH4 reduction furnished the azapropellanes 4a and 4c, respectively. A second hydrophobic element was introduced by transformation of the alcohols 4a into carbamates 4b. The σ1 affinity of the azapropellanes 4 is strongly dependent on the stereochemistry and the substitution pattern in 12-position. anti-configured azapropellanes anti-4a and anti-4b show higher σ1 affinity than their syn-configured counterparts syn-4a and syn-4b. Conversion of the alcohol anti-4a into the carbamate anti-4b led to increased σ1 affinity, but complete removal of the 12-substituent resulted in the highest σ1 affinity (Ki(4c)?=?17?nM). It can be concluded that the propellane scaffold alone is able to form strong lipophilic interactions and stabilize the ligand–σ1 receptor complex as does usually the primary hydrophobic region.  相似文献   

14.
 The single Fe(II) in reduced rubredoxin from Clostridium pasteurianum was found to be quantitatively displaced by either Cd2+ or Zn2+ when a modest molar excess of the substituting metal salt was anaerobically incubated with the reduced rubredoxin under mild conditions, namely, room temperature, pH 5.4–8.4, and no protein denaturants. Under the same conditions, cadmium-for-zinc substitution was also achieved upon aerobic incubation of the zinc-substituted rubredoxin with a modest molar excess of Cd2+. Displacements of Fe(II) from the reduced rubredoxin were not observed upon anaerobic incubation with Ni2+, Co2+, or VO2+ salts, and no reaction with any of the divalent metal ions was observed for the oxidized [Fe(III)] rubredoxin. Fe(II) could not be re-inserted into the Zn- or Cd-substituted rubredoxins without resorting to protein denaturation. 1H and 113Cd NMR experiments showed that the cadmium-substituted rubredoxin prepared by the non-denaturing substitution method retained the pseudotetrahedral M(SCys)4 coordination geometry and secondary structural elements characteristic of the native rubredoxin, and that "unzipping" of the β-sheet did not occur during metal substitution. Rates of Fe(II) displacement by M2+ (M=Cd or Zn) increased with increasing M2+/rubredoxin ratio, decreasing pH, and lower ionic strength. The substitution rates were faster for M=Cd than for M=Zn. Rates of Cd2+ substitution into a V8A-mutated rubredoxin were significantly faster than for the wild-type protein. The side-chain of V8 is on the protein surface and close to the metal-ligating Cys42Sγ at the M(SCys)4 site. Therefore, the rate-limiting step in the substitution process is suggested to involve direct attack of the [M(SCys)4]2– site by the incoming M2+, without global unfolding of the protein. Implications of these results for metal ion incorporation into rubredoxins in vivo are discussed. Received: 29 May 1998 / Accepted: 11 August 1998  相似文献   

15.
Serotoninergic neurotransmission has been implicated in modulation of learning and memory. It has been demonstrated that 5-hydroxytryptamine(6) (5-HT(6)) receptor antagonists show beneficial effect on cognition in several animal models. Based on a pharmacophore model reported in the literature, we have designed and successfully identified a 7-benzenesulfonyl-1,2,3,4-tetrahydro-benzo[4,5]furo[2,3-c]pyridine (3a) scaffold as a novel class of 5-HT(6) receptor antagonists. Despite good activity against 5-HT(6) receptor, 3a exhibited poor liver microsome stability in mouse, rat and dog. It was demonstrated that the saturation of the double bond of the tetrahydropyridine ring of 3a enhanced metabolic stability. However the resulting compound, 4a (7-phenylsulfonyl-1,2,3,4,4a,9a-hexahydro-benzo[4,5]furo[2,3-c] pyridine-HCl salt) exhibited ~30-fold loss in potency along with introduction of two chiral centers. In our optimization process for this series, we found that substituents at the 2 or 3 positions on the distal aryl group are important for enhancing activity against 5-HT(6). Separation of enantiomers and subsequent optimization and SAR with bis substituted phenyl sulfone provided potent 5-HT(6) antagonists with improved PK profiles in rat. A potent, selective 5-HT(6)R antagonist (15k) was identified from this study which showed good oral bioavailability (F=39%) in rat with brain penetration (B/P=2.76) and in vivo activity in a rat social recognition test.  相似文献   

16.
A series of six isostructural lanthanide dimers of general formula [Ln2(mdeaH2)2(piv)6], where mdeaH2 is N-methyldiethanolamine, piv is pivalate, and Ln = La, Ce, Pr, Nd, Sm, and Gd, has been surveyed to gauge the nature of the magnetic interactions between the lanthanide centres. Single-crystal X-ray structure analyses indicate that the lanthanides are connected by syn,syn-carboxylate bridges. It was found from an analysis of their bulk magnetic susceptibilities as a function of temperature that this type of bridge mediates vanishingly small magnetic interactions. This finding is important in the context of developing synthetic strategies for the preparation of new molecular based magnetic materials.  相似文献   

17.
[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe–4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe–4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron–sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx46–53HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.  相似文献   

18.
Two types of iron-sulfur clusters, [3 Fe–3 S] and [4 Fe–4 S], were identified by 1H-NMR in ferredoxins from Thermus thermophilus, Mycobacterium smegmatis and Pseudomonas ovalis. The [4 Fe–4 S] clusters always showed the redox couples which had potentials lower than that of the [3 Fe–3 S] clusters.  相似文献   

19.
Abstract

Chemical speciation of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2,3-dihydroxybenzoic acid in 0.0-60.0% v/v 1, 2-propanediol-water mixtures maintaining an ionic strength of 0.16 mol dm-3 at 303±0.1 K has been studied pH metrically. The predominant complexes formed are ML, ML2 and ML2H2 for Co(II), Ni(II) and Zn(II) and ML, ML2, ML2H and ML2H2 for Cu(II). Models containing different numbers of species were refined by using the computer program MINIQUAD75. Selection of the best fit chemical models was based on statistical parameters and residual analysis. The trend in variation of complex stability constants with dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of species, formation equilibria and effect of influential parameters on the stability constants have been presented. The possible structures of the various species are elucidated on the basis of the analysis of the pH-metric data.  相似文献   

20.
M?ssbauer studies of the hemoprotein subunit (SiR) of E. coli sulfite reductase have shown that the siroheme and the [4Fe-4S] cluster are exchange-coupled. Here we report M?ssbauer studies of SiR complexed with either CO or CN- and of SiR in the presence of the chaotropic agent dimethyl sulfoxide (Me2SO). The spectra of one-electron-reduced SiR X CN show that all five iron atoms reside in a diamagnetic environment; the ferroheme X CN complex is low spin and the [4Fe-4S] cluster is in the 2+ oxidation state. Titration with ferricyanide affords a CN- complex of oxidized SiR in which the siroheme iron is low spin ferric, with the cluster remaining in the 2+ state. At low temperatures, paramagnetic hyperfine interactions are observed for the iron sites of the cluster, suggesting that it is exchange-coupled to the heme iron. Reduction of one-electron-reduced SiR X CN and SiR X CO yields complexes with "g = 1.94"-type EPR signals showing that the second electron is accommodated by the iron-sulfur cluster. The fully reduced complexes yield well resolved M?ssbauer spectra which were analyzed in the spin Hamiltonian formalism. The analysis shows that the cluster subsites are equivalent in pairs, one pair having properties reminiscent of ferric sites whereas the other pair has features more typical of ferrous sites. The M?ssbauer spectra of oxidized SiR kept in 60% (v/v) Me2SO are virtually identical with those observed for SiR in standard buffer, implying that the coupling is maintained in the presence of the chaotrope. Fully reduced SiR displays an EPR signal with g values of g = 2.53, 2.29, and 2.07. In 60% Me2SO, this signal vanishes and a g = 1.94 signal develops; this transition is accompanied by a change in the spin state of the heme iron from S = 1 (or 2) to S = O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号