首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阔苞菊(Pluchea indica)是一种红树林伴生植物,以其在原产地的药用特性和部分引入地的入侵性而闻名。本研究旨在评估阔苞菊在其分布范围内遗传变异的地理分布,确定影响其遗传结构的因素,并利用这些信息对阔苞菊在原产地和引入地的保护和管理策略提出建议。 我们以来自阔苞菊原产地(亚洲)和引入地(美国)的31个种群共348个个体的15个核微卫星位点数据对阔苞菊的遗传多样性和种群结构进行了评估。在大尺度范围以及局部区域两种空间尺度上对阔苞菊遗传变异的空间格局进行了探讨,并验证了以下假说:地理距离和自然地理屏障将影响种群结构并在空间尺度上产生不同程度的分化。研究结果表明,与所研究区域内的其它红树林物种的遗传多样性参数相比, 我们发现阔苞菊在种群水平上具有相对较高的遗传多样性以及在物种水平上具有明显的遗传分化。大多数阔苞菊种群显示杂合子缺失, 这主要是由于近交和有限的基因流所导致。在较大空间尺度上进行的种群结构分析显示,该物种自然分布范围内存在两个主要遗传谱系,中国的种群与印度尼西亚、马来西亚、新加坡、泰国、柬埔寨和菲律宾的种群分别属于不同的谱系,而美国的种群可能来自于中国的谱系。 此外,在局部区域范围内也同样检测到种群之间的遗传分化。大部分阔苞菊种群所表现出的遗传瓶颈效应强调了其具有本地灭绝的风险。基于上述研究结果,我们建议采用原位保护策略对阔苞菊进行管理,并开展对优先保护种群的保护行动以维持遗传多样性。  相似文献   

2.
3.
The soil-isolated strain XP was identified as Rhodococcus erythropolis. R. erythropolis XP could efficiently desulfurize benzonaphthothiophene, a complicated model sulfur compound that exists in crude oil. The desulfurization product of benzonaphthothiophene was identified as α-hydroxy-β-phenyl-naphthalene. Resting cells could desulfurize diesel oil (total organic sulfur, 259 ppm) after hydrodesulfurization. The sulfur content of diesel oil was reduced by 94.5% by using the resting cell biocatalyst for 24 h at 30°C. Biodesulfurization of crude oils was also investigated. After 72 h of treatment at 30°C, 62.3% of the total sulfur content in Fushun crude oil (initial total sulfur content, 3,210 ppm) and 47.2% of that in Sudanese crude oil (initial total sulfur, 1,237 ppm) were removed. Gas chromatography with pulsed-flame photometric detector analysis was used to evaluate the effect of R. erythropolis XP treatment on the sulfur content in Fushun crude oil, and it was shown that most organic sulfur compounds were eliminated after biodesulfurization.  相似文献   

4.
The soil-isolated strain XP was identified as Rhodococcus erythropolis. R. erythropolis XP could efficiently desulfurize benzonaphthothiophene, a complicated model sulfur compound that exists in crude oil. The desulfurization product of benzonaphthothiophene was identified as alpha-hydroxy-beta-phenyl-naphthalene. Resting cells could desulfurize diesel oil (total organic sulfur, 259 ppm) after hydrodesulfurization. The sulfur content of diesel oil was reduced by 94.5% by using the resting cell biocatalyst for 24 h at 30 degrees C. Biodesulfurization of crude oils was also investigated. After 72 h of treatment at 30 degrees C, 62.3% of the total sulfur content in Fushun crude oil (initial total sulfur content, 3,210 ppm) and 47.2% of that in Sudanese crude oil (initial total sulfur, 1,237 ppm) were removed. Gas chromatography with pulsed-flame photometric detector analysis was used to evaluate the effect of R. erythropolis XP treatment on the sulfur content in Fushun crude oil, and it was shown that most organic sulfur compounds were eliminated after biodesulfurization.  相似文献   

5.
The internal transcribed spacer regions (ITS1 and ITS2) including the 5.8S region of the ‘New Zealand flatworm’, Arthurdendyus triangulates, are 1004 base pairs in length. Restriction fragment length polymorphism analysis of PCR products (PCR‐RFLP) was conducted on A. triangulates specimens from 45 locations in Northern Ireland, Scotland, England and New Zealand. Seven restriction endonucleases (Alu I, Rsa I, Sau3A I, Cfo I, Nde I, Dde I, and Mbo I) were used to reveal intraspecific variation. Analysis of molecular variance revealed the presence of population genetic substructuring, with most genetic heterogeneity present between populations rather than between individuals or geographical regions. No distinct differences were found between Northern Irish and Scottish populations but phylogenetic analysis supports the hypothesis of multiple introductions from New Zealand. There was no significant relationship between genetic distance and geographic distance, as would be expected for natural spread, indicating that this species is largely anthropochorous, even in parts of New Zealand.  相似文献   

6.
The ability of Rhodococcus erythropolis strain EK-1 to produce surfactants when grown on hydrophilic (ethanol and glucose) and hydrophobic (liquid paraffins and hexadecane) substrates was studied. The strain was found to produce surfactants with emulsifying and surface-active properties. The production of surfactants depended on the composition of the nutritive medium, nature and concentration of the sources of carbon and nitrogen, and duration of cultivation. Chemically, surfactants produced by Rhodococcus erythropolis EK-1 grown on ethanol are a complex of lipids with polysaccharide-proteinaceous substances. The lipids include glycolipids (trehalose mono- and dicorynomycolates) and common lipids (cetyl alcohol, palmitic acid, methyl n-pentadecanoate, triglycerides, and mycolic acids).  相似文献   

7.
Summary Polysaccharide formation by Rhodococcus erythropolis was studied using lower mono-, di-and trihydric alcohols, sugars and n-alkanes as carbon sources. Cultural conditions of the organism were examined with regard to polysaccharide production. It was demonstrated that a glycerol substrate, an 30°C incubation temperature and a pH of 7.5 were optimal cultural conditions for polysaccharide formation. Addition of penicillin G in the decelerating growth phase increased the polysaccharide concentration in the culture filtrate to 3.1 g/l. One of the main extracellular heteropolysaccharides formed by Rhodococcus erythropolis consisted of glucose and mannose in the molar ratio 11, a small portion of protein and a trace of glucosamine. The molecular weight was to be 1·14×106.  相似文献   

8.
The ability of Rhodococcus erythropolis strain EK-1 to produce surfactants when grown on hydrophilic (ethanol and glucose) and hydrophobic (liquid paraffins and hexadecane) substrates was studied. The strain was found to produce surfactants with emulsifying and surface-active properties. The production of surfactants depended on the composition of the nutritive medium, nature and concentration of the sources of carbon and nitrogen, and duration of cultivation. Chemically, surfactants produced by Rhodococcus erythropolis EK-1 grown on ethanol are a complex of lipids with polysaccharide–proteinaceous substances. The lipids include glycolipids (trehalose mono- and dicorynomycolates) and common lipids (cetyl alcohol, palmitic acid, methyl n-pentadecanoate, triglycerides, and mycolic acids).  相似文献   

9.
The carbazole dioxygenase genes were introduced into a dibenzothiophene degrader. The recombinant Rhodococcus erythropolis SN8 was capable of efficiently degrading dibenzothiophene and carbazole simultaneously. SN8 could also degrade various alkylated derivatives of carbazole and dibenzothiophene in FS4800 crude oil by just a one-step bioprocess.  相似文献   

10.
The carbazole dioxygenase genes were introduced into a dibenzothiophene degrader. The recombinant Rhodococcus erythropolis SN8 was capable of efficiently degrading dibenzothiophene and carbazole simultaneously. SN8 could also degrade various alkylated derivatives of carbazole and dibenzothiophene in FS4800 crude oil by just a one-step bioprocess.  相似文献   

11.
Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population.  相似文献   

12.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the K(m) values for NADH and FMN were 208 and 10.8 microM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35 degrees C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80 degrees C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705-1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

13.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

14.
During growth on compounds containing methyl groups a formaldehyde dehydrogenase is induced in the gram-positive bacteria Rhodococcus erythropolis. This formaldehyde dehydrogenase has been purified to homogeneity using affinity chromatography and permeation chromatography. The isoelectric point of the enzyme was 4.7. The molar mass of the native enzyme was determined as 130 000 g/mol. Sodium dodecyl sulfate gel electrophoresis yielded a single subunit with a molar mass of 44000 g/mol. These results, together with cross-linking experiments which yielded monomer, dimer, and trimer bands, are consistent with a trimeric subunit structure of the formaldehyde dehydrogenase. A heat-stable cofactor of low molar mass was required for activity with formaldehyde as substrate. This cofactor was found to be oxidizable, but active only in its reduced form. Preparative electrofocusing revealed that the cofactor is a weak acid with a pK of about 6.5. The enzyme was active with the homologous series of the primary alcohols, ethanol up to octanol, without requiring the presence of the cofactor. A mutant without formaldehyde dehydrogenase activity was not impaired in its growth with ethanol as substrate. It is suggested that the alcohols mimic the true substrate of the formaldehyde dehydrogenase, which could be a hydroxymethyl derivative of the cofactor, resulting from the addition of formaldehyde.  相似文献   

15.
Genetic diversity of native and introduced populations of Ulva pertusa (Ulvales, Chlorophyta) was examined using genetic markers of chloroplast, mitochondria and nuclear non‐coding region sequences. In the preliminary investigations to genetically identify the species for further analyses, U. pertusa was found only from temperate coasts of the more extensive collection sites including tropical coasts suggesting that it is a temperate species and basically not distributed in tropical regions. For chloroplast and mitochondrial sequences, repeating patterns of short tandem repeat sequences and nucleotide substitutions were used to recognize the haplotypes (genetic types). A total of 48 haplotypes based on combinations of chloroplast and mitochondrial haplotypes were recognized in the 244 specimens collected in the presumptive native range (Northeast Asia) and introduced populations (North America, Australia, New Zealand, Chile and Europe). Among them, 46 haplotypes (H1–H8 and H11–H48) were recognized in Northeast Asia, whereas only 1–5 haplotypes were recognized in the other areas. Nuclear microsatellite sequences were also analyzed. The lengths of the PCR products including the nuclear microsatellite region of 234 specimens were determined, and a total of 17 genotypes were recognized. Among them, 14 genotypes were found in Northeast Asia, whereas 1–7 genotypes were recognized in the other areas. Based on the results, the hypothesis that the native range of the species is in Northeast Asia was supported, and the populations outside this range were concluded to be non‐indigenous populations.  相似文献   

16.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides (EPS), which are assumed to play an important role in the hydrocarbon tolerance of R. erythropolis PR4. The strain produced an acidic EPS, mucoidan, together with a fatty acid-containing EPS, PR4 FACEPS. The chemical structure of the mucoidan was determined using (1)H and (13)C NMR spectroscopy and by conducting 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The mucoidan was shown to consist of a pentasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

17.
18.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides, which are assumed to play an important role in the hydrocarbon tolerance of this bacterium. The strain produced two acidic extracellular polysaccharides, FR1 and FR2, and the latter showed emulsifying activity toward clove oil, whereas the former did not. FR2 was composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1, and contained 2.9% (w/w) stearic acid and 4.3% (w/w) palmitic acid attached via ester bonds. Therefore, we designated FR2 as a PR4 fatty acid-containing extracellular polysaccharide or FACEPS. The chemical structure of the PR4 FACEPS polysaccharide chain was determined by 1D (1)H and (13)C NMR spectroscopies as well as by 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The sugar chain of PR4 FACEPS was shown to consist of tetrasaccharide repeating units having the following structure: [structure: see text].  相似文献   

19.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

20.
Foreign plants are usually introduced for food or aesthetic reasons. Most of these plants are non-invasive, but can alter the evolutionary trajectory of the associated native insects or inadvertently spread potential pests. A hitherto poorly documented example is the rapid expansion of Chilades pandava, a Cycas-feeding butterfly. Since about 1990, large numbers of the Sago Palm Cycas revoluta were introduced into Taiwan. Invading or introduced with this hostplant, Ch. pandava has rapidly spread to all major parts of Taiwan. To trace the source of outbreaks, we sampled 810 specimens covering 50 Taiwanese localities and other regions using mitochondrial COII sequences. Overall haplotype diversity was high (h = 0.791), but only 29 haplotypes were found. The haplotype C which dominates outbreak populations from western Taiwan was endemic to the island. This is consistent with the hypothesis of a local range expansion of Ch. pandava, rather than an introduction. In addition, the Taiwanese Central Mountain Ridge may constitute a primary biogeographic barrier restricting gene flow between eastern and western populations. Our study not only flags an important new invasive insect that needs to be monitored and controlled within the horticultural trade and for in situ cycad conservation, but also provides a clearly documented case of the transformation of a native tropical butterfly into a pest via introduced horticultural plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号