首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.  相似文献   

2.
The molecular chaperone 70-kDa heat-shock proteins (Hsp70s) play essential roles in maintaining protein homeostasis. Hsp110, an Hsp70 homolog, is highly efficient in preventing protein aggregation but lacks the hallmark folding activity seen in Hsp70s. To understand the mechanistic differences between these two chaperones, we first characterized the distinct peptide substrate binding properties of Hsp110s. In contrast to Hsp70s, Hsp110s prefer aromatic residues in their substrates, and the substrate binding and release exhibit remarkably fast kinetics. Sequence and structure comparison revealed significant differences in the two peptide-binding loops: the length and properties are switched. When we swapped these two loops in an Hsp70, the peptide binding properties of this mutant Hsp70 were converted to Hsp110-like, and more impressively, it functionally behaved like an Hsp110. Thus, the peptide substrate binding properties implemented in the peptide-binding loops may determine the chaperone activity differences between Hsp70s and Hsp110s.  相似文献   

3.
The yeast [PSI+] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI+] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI+] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.  相似文献   

4.
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.  相似文献   

5.
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.  相似文献   

6.
The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.  相似文献   

7.
[PSI(+)] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+)] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+)] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+)] and inactivation of Hsp104 cures [PSI(+)] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.  相似文献   

8.
Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN(+)] prion, which is the amyloid form of Rnq1, or [PSI(+)] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI(+)] yeast than in [PIN(+)], even though HttQP103 formed multiple aggregates in both [PSI(+)] and [PIN(+)] yeast. This toxicity was only observed in the strong [PSI(+)] variant, not the weak [PSI(+)] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI(+)] prion is primarily due to sequestration of the essential protein, Sup35.  相似文献   

9.
《朊病毒》2013,7(3):191-200
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.  相似文献   

10.
Jens Tyedmers 《朊病毒》2012,6(3):191-200
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.  相似文献   

11.
《朊病毒》2013,7(3):234-239
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2012; 287:542 - 56; http://dx.doi.org/10.1074/jbc.M111.302869; PMID: 22081611 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

12.
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

13.
Hsp104 solubilizes protein aggregates in cooperation with Hsp70/40. Although the framework of the disaggregase function has been elucidated, the actual process of aggregate solubilization by Hsp104-Hsp70/40 remains poorly understood. Here we developed several methods to investigate the functions of Hsp104 and Hsp70/40 from Saccharomyces cerevisiae, at single-molecule levels. The single-molecule methods, which provide the size distribution of the aggregates, revealed that Hsp70/40 prevented the formation of large aggregates from small aggregates and that the solubilization of the small aggregates required both Hsp104 and Hsp70/40. We directly visualized the individual association-dissociation dynamics of Hsp104 on immobilized aggregates and found that the lifetimes of the Hsp104-aggregate complex are divided into two groups: short (∼4 s) and long (∼30 s). Hsp70/40 stimulated the association of Hsp104 with aggregates and increased the duration of this association. The single-molecule data provide novel insights into the functional mechanism of the Hsp104 disaggregation machine.  相似文献   

14.
Hsp100 chaperones cooperate with the Hsp70 chaperone system to disaggregate and reactivate heat-denatured aggregated proteins to promote cell survival after heat stress. The homology models of Hsp100 disaggregases suggest the presence of a conserved network of ionic interactions between the first nucleotide binding domain (NBD1) and the coiled-coil middle subdomain, the signature domain of disaggregating chaperones. Mutations intended to disrupt the putative ionic interactions in yeast Hsp104 and bacterial ClpB disaggregases resulted in remarkable changes of their biochemical properties. These included an increase in ATPase activity, a significant increase in the rate of in vitro substrate renaturation, and partial independence from the Hsp70 chaperone in disaggregation. Paradoxically, the increased activities resulted in serious growth impediments in yeast and bacterial cells instead of improvement of their thermotolerance. Our results suggest that this toxic activity is due to the ability of the mutated disaggregases to unfold independently from Hsp70, native folded proteins. Complementary changes that restore particular salt bridges within the suggested network suppressed the toxic effects. We propose a novel structural aspect of Hsp100 chaperones crucial for specificity and efficiency of the disaggregation reaction.  相似文献   

15.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   

16.
Heat shock protein 105/110-kDa (Hsp105/110), a member of the Hsp70 super family of molecular chaperones, serves as a nucleotide exchange factor for Hsc70, independently prevents the aggregation of misfolded proteins, and functionally relates to Hsp90. We investigated the roles of human Hsp105α, the constitutively expressed isoform, in the biogenesis and quality control of the cystic fibrosis transmembrane conductance regulator (CFTR). In the endoplasmic reticulum (ER), Hsp105 facilitates CFTR quality control at an early stage in its biosynthesis but promotes CFTR post-translational folding. Deletion of Phe-508 (ΔF508), the most prevalent mutation causing cystic fibrosis, interferes with de novo folding of CFTR, impairing its export from the ER and accelerating its clearance in the ER and post-Golgi compartments. We show that Hsp105 preferentially associates with and stabilizes ΔF508 CFTR at both levels. Introduction of the Hsp105 substrate binding domain potently increases the steady state level of ΔF508 CFTR by reducing its early-stage degradation. This in turn dramatically enhances ΔF508 CFTR cell surface functional expression in cystic fibrosis airway epithelial cells. Although other Hsc70 nucleotide exchange factors such as HspBP1 and BAG-2 inhibit CFTR post-translational degradation in the ER through cochaperone CHIP, Hsp105 has a primary role promoting CFTR quality control at an earlier stage. The Hsp105-mediated multilevel regulation of ΔF508 CFTR folding and quality control provides new opportunities to understand how chaperone machinery regulates the homeostasis and functional expression of misfolded proteins in the cell. Future studies in this direction will inform therapeutics development for cystic fibrosis and other protein misfolding diseases.  相似文献   

17.
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.  相似文献   

18.
Hsp70 alternates between an ATP-bound state in which the affinity for substrate is low and an ADP-bound state in which the affinity for substrate is high, as a result Hsp70 assists the protein folding process through nucleotide-controlled cycles of substrate binding and release. In this work, we describe the cloning and purification of the human 70-kDa heat shock cognate protein, Hsc70, and the use of circular dichroism, intrinsic emission fluorescence, and isothermal titration calorimetry to characterize conformational changes induced by ADP and ATP binding. Binding of either ADP or ATP were not accompanied by a net change in secondary structure suggesting that the conformational rearrangement caused by nucleotide binding is localized. MgADP or MgATP had a greater effect in the stability at stress temperatures than ADP or ATP did. Isothermal titration calorimetry data pointed out that Hsc70 had a lower affinity for ATP (KD=710 nM) than for ADP (KD=260 nM).  相似文献   

19.
Proteins with Bcl2-associated anthanogene (BAG) domains act as nucleotide exchange factors (NEFs) for the molecular chaperone heat shock protein 70 (Hsp70). There are six BAG family NEFs in humans, and each is thought to link Hsp70 to a distinct cellular pathway. However, little is known about how the NEFs compete for binding to Hsp70 or how they might differentially shape its biochemical activities. Toward these questions, we measured the binding of human Hsp72 (HSPA1A) to BAG1, BAG2, BAG3, and the unrelated NEF Hsp105. These studies revealed a clear hierarchy of affinities: BAG3 > BAG1 > Hsp105 ≫ BAG2. All of the NEFs competed for binding to Hsp70, and their relative affinity values predicted their potency in nucleotide and peptide release assays. Finally, we combined the Hsp70-NEF pairs with cochaperones of the J protein family (DnaJA1, DnaJA2, DnaJB1, and DnaJB4) to generate 16 permutations. The activity of the combinations in ATPase and luciferase refolding assays were dependent on the identity and stoichiometry of both the J protein and NEF so that some combinations were potent chaperones, whereas others were inactive. Given the number and diversity of cochaperones in mammals, it is likely that combinatorial assembly could generate a large number of distinct permutations.  相似文献   

20.
《朊病毒》2013,7(1):69-77
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号