首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of glutamine availability and glucose homeostasis during and after exercise was investigated, measuring whole body glucose kinetics with [3-3H]glucose and net organ balances of glucose and amino acids (AA) during basal, exercise, and postexercise hyperinsulinemic-euglycemic clamp periods in six multicatheterized dogs. Dogs were studied twice in random treatment order: once with glutamine (12 micromol.kg(-1).min(-1); Gln) and once with saline (Con) infused intravenously during and after exercise. Plasma glucose fell by 7 mg/dl with exercise in Con (P < 0.05), but it did not fall with Gln. Gln further stimulated whole body glucose production and utilization an additional 24% above a normal exercise response (P < 0.05). Net hepatic uptake of glutamine and alanine was greater with Gln than Con during exercise (P < 0.05). Net hepatic glucose output was increased sevenfold during exercise with Gln (P < 0.05) but not with Con. Net hindlimb glucose uptake was increased similarly during exercise in both groups (P < 0.05). During the postexercise hyperinsulinemic-euglycemic period, glucose production decreased to near zero with Con, but it did not decrease below basal levels with Gln. Gln increased glucose utilization by 16% compared with Con after exercise (P < 0.05). Furthermore, net hindlimb glucose uptake in the postexercise period was increased approximately twofold vs. basal with Gln (P < 0.05) but not with Con. Net hepatic uptake of glutamine during the postexercise period was threefold greater for Gln than Con (P < 0.05). In conclusion, glutamine availability modulates glucose homeostasis during and after exercise, which may have implications for postexercise recovery.  相似文献   

2.
C P Rusconi  T R Cech 《The EMBO journal》1996,15(13):3286-3295
The mitochondrial genome of Tetrahymena does not appear to encode enough tRNAs to perform mitochondrial protein synthesis. It has therefore been proposed that nuclear-encoded tRNAs are imported into the mitochondria. T.thermophila has three major glutamine tRNAs: tRNA(Gln)(UUG), tRNA(Gln)(UUA) and tRNA(Gln)(CUA). Each of these tRNAs functions in cytosolic translation. However, due to differences between the Tetrahymena nuclear and mitochondrial genetic codes, only tRNA(Gln)(UUG) has the capacity to function in mitochondrial translation as well. Here we show that approximately 10-20% of the cellular complement of tRNA(Gln)(UUG) is present in mitochondrial RNA fractions, compared with 1% or less for the other two glutamine tRNAs. Furthermore, this glutamine tRNA is encoded only by a family of nuclear genes, the sequences of several of which are presented. Finally, when marked versions of tRNA(Gln)(UUG) and tRNA(Gln)(UUA) flanked by identical sequences are expressed in the macronucleus, only the former undergoes mitochondrial import; thus sequences within tRNA(Gln)(UUG) direct import. Because tRNA(Gln)(UUG) is a constituent of mitochondrial RNA fractions and is encoded only by nuclear genes, and because ectopically expressed tRNA(Gln)(UUG) fractionates with mitochondria like its endogenous counterpart, we conclude that it is an imported tRNA in T.thermophila.  相似文献   

3.
Li  Xinyu  Zheng  Shixuan  Wu  Guoyao 《Amino acids》2020,52(5):671-691
Amino Acids - Glutamate (Glu) and glutamine (Gln) comprise a large proportion of total amino acids (AAs) in fish in the free and protein-bound forms. Both Glu and Gln are synthesized de novo from...  相似文献   

4.
Waterlogging of soybean plants (Glycine max L.) led to impaired symbiotic N2 fixation and a marked decline in glutamine (Gln) concentration in xylem bleeding sap. Xylem Gln concentration increased during the growth cycle of the plant and was correlated with nodule formation. Treatments known to impair N2 fixation, such as exposing the root system to pure N2 gas or a mixture of Ar and O2 (80:20; v/v), led to specific declines in xylem sap Gln. The decrease in Gln observed during waterlogging was also seen on transfer of nodulated plants to aerated hydroponics, where the decline was highly correlated with ureide content in the xylem sap. Upon flooding the nodulated root system, the specific decline in xylem sap Gln could be detected within 10 min and reached a minimum within 60 min, indicating that waterlogging has an immediate effect on N2 fixation. It is concluded that xylem Gln arises directly from N2-fixation and is a useful indicator of N2 fixation activity of symbiotic soybean plants.  相似文献   

5.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   

6.
O-Carbamoylserine and O-carbamoylthreonine are glutamine analogues that were incorporated into a Stat3 inhibitory peptide to probe the requirements of Gln at the pY+3 position. Fmoc-Ser-NHBn and Fmoc-Thr-NHBn were converted to nitrophenyl carbonates and were attached to Rink resin via a side-chain carbamate linkage. After assembly of the peptide, acid treatment resulted in O-carbamoylserine and O-carbamoylthreonine-containing peptides. The order of affinity for Stat3 was Gln > Ser(CONH2) > Thr(CONH2) suggesting a relatively tight binding pocket for the side chain of glutamine.  相似文献   

7.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNAGln was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNAGln charging. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.  相似文献   

8.
The nucleotide sequences of the two glutamine tRNA species in Escherichia coli K12 have been determined. Sufficient data was obtained to order unambiguously the products of complete RNase digestion of tRNA2Gln, and all but one oligonucleotide from tRNA1Gln. The sequence of tRNA1Gln was established by analogy with tRNA1Gln, as the two tRNAs are very similar, differing by only 7 residues out of 75. tRNA1Gln has the anticodon NUG, where N is a modified nucleotide which is likely to be a derivative of 2-thiouridine, and is specific for the codon CAA. tRNA1Gln has the anticodon CUG, and is specific for the codon CAG (Folk, W. R., and Yaniv, M. (1972) Nature 237, 165). The complete sequences of the tRNAGln species are: See journal for formula (Unique residues are enclosed in parentheses, with the residue in tRNA1Gln above that in tRNA2Gln.).  相似文献   

9.
The error rate of asparagine (Asn) and glutamine (Gln) amide rotamers in protein crystal structures is in the order of 20% and as a consequence the current Protein Database (PDB) contains approximately half a million incorrect Asn and Gln side-chain rotamers. Here we present NQ-Flipper, a web service based on knowledge-based potentials of mean force to automatically detect and correct erroneous rotamers. We achieve excellent agreement with expert curated data.  相似文献   

10.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.  相似文献   

11.
The aim of this study was to determine the role of glucagon in hepatic glutamine (Gln) metabolism during exercise. Sampling (artery, portal vein, and hepatic vein) and infusion (vena cava) catheters and flow probes (portal vein, hepatic artery) were implanted in anesthetized dogs. At least 16 days after surgery, an experiment, consisting of a 120-min equilibration period, a 30-min basal sampling period, and a 150-min exercise period, was performed in these animals. [5-(15)N]Gln was infused throughout experiments to measure gut and liver Gln kinetics and the incorporation of Gln amide nitrogen into urea. Somatostatin was infused throughout the study. Glucagon was infused at a basal rate until the beginning of exercise, when the rate was either 1) gradually increased to simulate the glucagon response to exercise (n = 5) or 2) unchanged to maintain basal glucagon (n = 5). Insulin was infused during the equilibration and basal periods at rates designed to achieve stable euglycemia. The insulin infusion was reduced in both protocols to simulate the exercise-induced insulin decrement. These studies show that the exercise-induced increase in glucagon is 1) essential for the increase in hepatic Gln uptake and fractional extraction, 2) required for the full increment in ureagenesis, 3) required for the specific transfer of the Gln amide nitrogen to urea, and 4) unrelated to the increase in gut fractional Gln extraction. These data show, by use of the physiological perturbation of exercise, that glucagon is a physiological regulator of hepatic Gln metabolism in vivo.  相似文献   

12.
13.
The substitution of arginine for glutamine at amino acid 188 (Q188R) ablates the function of human galactose-1-phosphate uridyltransferase (GALT) and is the most common mutation causing galactosemia in the white population. GALT catalyzes two consecutive reactions. The first reaction binds UDP-glucose (UDP-Glu), displaces glucose-1-phosphate (glu-1-P), and forms the UMP-GALT intermediate. In the second reaction, galactose-1-phosphate (gal-1-P) is bound, UDP-galactose (UDP-Gal) is released, and the free enzyme is recycled. In this study, we modeled glutamine, asparagine, and a common mutation arginine at amino acid 188 on the three-dimensional model of the Escherichia coli GALT-UMP protein crystal. We found that the amide group of the glutamine side chain could provide two hydrogen bonds to the phosphoryl oxygens of UMP with lengths of 2.52 and 2.82 A. Arginine and asparagine could provide only one hydrogen bond of 2. 52 and 3.02 A, respectively. To test this model, we purified recombinant human Gln188-, Arg188-, and Asn188-GALT and analyzed the first reaction in the absence of gal-1-P by quantitating glu-1-P released using enzyme-linked methods. Gln188-GALT displaced 80 +/- 7. 0 nmol glu-1-P/mg GALT/min in the first reaction. By contrast, both Arg188- and Asn188-GALT released more glu-1-P (170 +/- 8.0 and 129 +/- 28.4 nmol/mg GALT/min, respectively). The overall, double displacement reaction was quantitated in the presence of gal-1-P. Gln188-GALT produced 80,030 +/- 5,910 nmol glu-1-P/mg GALT/min, whereas the mutant Arg188- and Asn188-GALT released only 600 +/- 71. 2 and 2960 +/- 283.6 nmole glu-1-P/mg GALT/min, respectively. We conclude from these data that glutamine at position 188 stabilizes the UMP-GALT intermediate through hydrogen bonding and enables the double displacement of both glu-1-P and UDP-Gal. The substitution of arginine or asparagine at position 188 reduces hydrogen bonding and destabilizes UMP-GALT. The unstable UMP-GALT allows single displacement of glu-1-P with release of free GALT but impairs the subsequent binding of gal-1-P and displacement of UDP-Gal.  相似文献   

14.
For several cancer cell types, the lack of an adequate supply of the amino acidl ‐glutamine (Gln) triggers apoptosis, a phenomenon termed Gln addiction. In this report, we examined the role of the anti‐apoptotic proteins of the B‐cell lymphoma 2 (BCL‐2) protein family in the survival of Sp2/0‐Ag14 (Sp2/0) mouse hybridoma cells, a cell line that undergoes apoptosis within minutes of Gln deprivation. Western blot analysis revealed that myeloid cell leukaemia 1 (MCL‐1) was expressed at much higher levels than BCL‐2, B‐cell lymphoma extra‐large and BCL‐2‐like protein 2 making it the prominent pro‐survival BCL‐2 family member in this hybridoma. Gln deprivation triggered a progressive decrease in MCL‐1 protein levels, which coincided with the decrease in Sp2/0 cell survival. Moreover, Sp2/0 cells were much more sensitive to the broad Bcl‐2 homology domain‐3 (BH3) mimetic obatoclax (which targets MCL‐1) than to the more selective drug ABT‐737 (which does not target MCL‐1). Finally, we show that obatoclax sensitizes Sp2/0 cells to apoptosis following Gln starvation. All together, the data presented here reveal that modulation of the pro‐survival protein MCL‐1 is an important step in the sequence of events leading to the initiation of apoptosis in Gln‐starved Sp2/0 cells. Cancer cells require an adequate supply ofl ‐glutamine for their survival. Using a mouse hybridoma cell line that is exquisitely sensitive to glutamine starvation, we show that the levels of the pro‐survival BCL‐2 family protein MCL‐1 decrease upon glutamine starvation in a manner that correlates with the loss of cell viability. Moreover, inhibiting MCL‐1 with the drug obatoclax sensitizes hybridoma cells to glutamine starvation. Thus, in some cancer cells, glutamine starvation triggers the inactivation of pro‐survival proteins. Our data suggest that the combined inhibition of glutamine biosynthesis pathways and BCL‐2 proteins may prove effective against some cancers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of glutamine on A549 cells exposed to moderate hyperoxia   总被引:4,自引:0,他引:4  
The use of high oxygen concentrations is frequently necessary in the treatment of acute respiratory distress syndrome (ARDS) and bronchopulmonary dysplasia (BPD). High oxygen concentrations, however, are detrimental to cell growth and cell survival. Glutamine (Gln) may be protective to cells during periods of stress and recently has been shown to increase survival in A549 cells exposed to lethal concentrations of oxygen (95% O2). We found that supplemental Gln enhances cell growth in A549 cells exposed to moderate concentrations of oxygen (60% O2). We therefore evaluated the effect of moderate hyperoxia on the cell cycle distribution of A549 cells. At 48 h there was no significant difference in the cell cycle distribution between 2 mM Gln cells in 60% O2 and 2 mM cells in room air. Furthermore, 2 mM Gln cells in 60% O2 had stable protein levels of cyclin B1 consistent with ongoing cell proliferation. In contrast, at 48 h, cells not supplemented with glutamine (Gln-) in 60% O2 had evidence of growth arrest by both flow cytometry (increased percentage of G1 cells) and by decreased protein levels of cyclin B1. G1 growth arrest in the Gln- cells exposed to 60% O2 was not, however, associated with induction of p21 protein. At 72 and 96 h, Gln- cells in 60% O2, began to demonstrate a partial loss of G1 checkpoint regulation and an increase in apoptosis, indicating an increased sensitivity to oxygen toxicity. Glutathione (GSH) concentrations were then measured. 2 mM Gln cells in 60% O2 were found to have higher concentrations of GSH compared to Gln- cells in 60% O2, suggesting that Gln confers protection to the cell during exposure to hyperoxia through up-regulation of GSH. When cells in 60% O2 were given higher concentrations of Gln (5 and 10 mM), cell growth at 96 h was increased compared to cells grown in 2 mM Gln (P<0.04). Clonal survival was also increased in cells exposed 60% O2 and supplemented with higher concentrations of Gln compared to Gln- cells in 60% O2. These studies suggest that supplemental glutamine may improve cell growth and cell viability and therefore may be beneficial to the lung during exposure to moderate concentrations of supplemental oxygen.  相似文献   

16.
Allosteric signaling within large ribonucleoproteins modulates both catalytic function and biological specificity, but the spatial extent and quantitative magnitudes of long-distance free-energy couplings have yet to be well characterized. Here, we employ pre-steady-state kinetics to generate a comprehensive mapping of intramolecular communication in the glutaminyl-tRNA synthetase:tRNA(Gln) complex. Alanine substitution at 29 positions across the protein-RNA interface reveals distinct coupling amplitudes for glutamine binding and aminoacyl-tRNA formation on the enzyme, respectively, implying the existence of multiple signaling pathways. Structural models suggest that long-range signal propagation from the tRNA anticodon is dynamically driven, whereas shorter pathways are mediated by induced-fit rearrangements. Seven protein contacts with the distal tRNA vertical arm each weaken glutamine binding affinity across distances up to 40 ?, demonstrating that negative allosteric coupling plays a key role in enforcing the selective RNA-amino acid pairing at the heart of the genetic code.  相似文献   

17.
The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic d-phenylalanine (Phe) were replaced by different aromatic d-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.  相似文献   

18.
Two essential residues playing critical roles in determining the substrate specificities of cytosolic glutamine synthetase (GS1) have been identified from the alignment of high-affinity (GLN1;1 and GLN1;4) and low-affinity (GLN1;2 and GLN1;3) GS1 isoenzymes in Arabidopsis, and confirmed by site-directed mutagenesis. The results indicated that either K49Q or A174S mutation is sufficient to increase the catalytic efficiencies of GLN1;3 by decreasing its Km values for ammonium. In contrast, replacement of Gln49 and Ser174 by lysine and alanine, respectively, was detrimental to glutamine synthetic activities in GLN1;4. The results suggested that Gln49 and Ser174 in the high-affinity GS1 isoenzymes are interchangeable with Lys49 and Ala174 in the low-affinity variants at the corresponding positions.  相似文献   

19.
-Aminobutyric acid (GABA) was accumulated in rice cell cultureswhen ammonium was added to the medium. After the addition ofammonium, a temporary increase in the glutamine (Gln) pool wasobserved before the accumulation of GABA. GABA also was markedlyaccumulated when Gln was added to the medium in place of ammonium.When glutamic acid (Glu) was added without ammonium, no accumulationof GABA occurred. When L-methionine-DL-sulfoximine (MSO), an inhibitor of glutaminesynthetase, was added to the nitrate medium, the ammonium poolincreased with no accumulation of Gln and GABA. Even when ammoniumwas supplied to the medium, no GABA accumulated in the presenceof MSO. When azaserine (AZ), which inhibits the transamidationof Gln, was added with Gln, no GABA was accumulated, althoughthe Gln pool in the cell cultures increased significantly. The accumulation of GABA in cultured rice cells produced byammonium as the nitrogen source probably is related directlyto the Gln pool size, which is increased when ammonium is suppliedto the medium. (Received August 6, 1979; )  相似文献   

20.
The glutamine in position 69 is one of only three conserved active-site amino acid differencesbetween Fe- and Mn-containing superoxide dismutases (SODs). We have refined theconditions for extremely selective labeling of the side chains of glutamine with 15N, and thusobtained dramatically simplified spectra, despite the large size of Fe-SOD. The improvedresolution afforded by such highly specific labeling permits the use of direct 15N detectionto observe and assign Gln 69, even though its distance to the paramagnetic Fe2+ is only 5Å. Selective glutamine side-chain labeling is inexpensive and has general utility forlarge (and paramagnet-containing) proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号