首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.  相似文献   

2.
3.
Nuclear factor kappaB (NF-kappaB) represents a family of dimeric DNA binding proteins, the pleotropic form of which is a heterodimer composed of RelA and p50 subunits. The biological activity of NF-kappaB is controlled through its subcellular localization. Inactive NF-kappaB is sequestered in the cytoplasm by physical interaction with an inhibitor, IkappaBalpha. Signal-mediated IkappaBalpha degradation triggers the release and subsequent nuclear translocation of NF-kappaB. It remains unknown whether the NF-kappaB shuttling between the cytoplasm and nucleus is subjected to additional steps of regulation. In this study, we demonstrated that the RelA subunit of NF-kappaB exhibits strong cytoplasmic localization activity even in the absence of IkappaBalpha inhibition. The cytoplasmic distribution of RelA is largely mediated by a leucine-rich sequence homologous to the recently characterized nuclear export signal (NES). This putative NES is both required and sufficient to mediate cytoplasmic localization of RelA as well as that of heterologous proteins. Furthermore, the cytoplasmic distribution of RelA is sensitive to a nuclear export inhibitor, leptomycin B, suggesting that RelA undergoes continuous nuclear export. Interestingly, expression of p50 prevents the cytoplasmic expression of RelA, leading to the nuclear accumulation of both RelA and p50. Together, these results suggest that the nuclear and cytoplasmic shuttling of RelA is regulated by both an intrinsic NES-like sequence and the p50 subunit of NF-kappaB.  相似文献   

4.
The inhibitor of kappa B alpha (IkappaBalpha) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IkappaBalpha. IkappaBalpha contains multiple functional domains that contribute to shuttling of IkappaBalpha between the cytoplasm and the nucleus. Nuclear import of IkappaBalpha is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IkappaBalpha is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin beta. However, in contrast to classical nuclear import pathways, nuclear import of IkappaBalpha is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IkappaBalpha is mediated by an N-terminal nuclear export sequence. Nuclear export of IkappaBalpha requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IkappaBalpha is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IkappaBalpha is mediated via a CRM1-dependent pathway.  相似文献   

5.
6.
A striking characteristic of mRNA export factors is that they shuttle continuously between the cytoplasm and the nucleus. This shuttling is mediated by specific factors interacting with peptide motifs called nuclear export signals (NES) and nuclear localization signals. We have identified a novel CRM-1-independent transferable NES and two nuclear localization signals in the Epstein-Barr virus mRNA export factor EB2 (also called BMLF1, Mta, or SM) localized at the N terminus of the protein between amino acids 61 and 146. We have also found that a previously described double NES (amino acids 213-236) does not mediate the nuclear shuttling of EB2, but is an interaction domain with the cellular export factor REF in vitro. This newly characterized REF interaction domain is essential for EB2-mediated mRNA export. Accordingly, in vivo, EB2 is found in complexes containing REF as well as the cellular factor TAP. However, these interactions are RNase-sensitive, suggesting that the RNA is an essential component of these complexes.  相似文献   

7.
8.
9.
10.
11.
Nuclear export of IkappaBalpha is mediated by the CRM1 nuclear export receptor. However, the identity of the nuclear export sequences NES(s) in IkappaBalpha that are responsible for binding of IkappaBalpha to CRM1 is controversial. Both a N-terminal NES-like region (amino acids 45-54) and a C-terminal NES-like region (amino acids 265-280) have, in a number of reports from different laboratories, been implicated in CRM1-dependent nuclear export of IkappaBalpha. We now demonstrate that the N-terminal NES-like region, but not the C-terminal NES-like region, is required for RanGTP-dependent binding of IkappaBalpha to CRM1. IkappaBalpha is a relatively weak substrate for CRM1, with an affinity for CRM1 that is 100-fold less than the minute virus of mice NS2 protein, a high affinity cargo protein for CRM1. We also demonstrate that IkappaBalpha functions as a physical adaptor between CRM1 and NFkappaB/Rel proteins. Both free IkappaBalpha and Rel-associated IkappaBalpha have comparable affinities for CRM1, suggesting that CRM1 does not discriminate between free IkappaBalpha and Rel-associated IkappaBalpha. Nuclear export of c-Rel by IkappaBalpha requires the N-terminal NES-like sequence of IkappaBalpha but is not affected by alanine substitutions within the C-terminal NES-like sequence of IkappaBalpha. In contrast, nuclear export of the v-Rel oncoprotein by IkappaBalpha is disrupted by alanine substitutions within either the N-terminal or the C-terminal NES-like sequences. However, alanine substitutions within the C-terminal NES-like sequence significantly reduce the affinity of IkappaBalpha for v-Rel, suggesting that loss of export function for this mutant is secondary to reduced association between IkappaBalpha and v-Rel. Taken together, our results demonstrate that the N-terminal NES-like sequence in IkappaBalpha is required for RanGTP-dependent binding of both free IkappaBalpha and NFkappaB/Rel-associated IkappaBalpha proteins to CRM1.  相似文献   

12.
The atypical protein kinase C (PKC) isoenzymes, lambda/iota- and zetaPKC, play important roles in cellular signaling pathways regulating proliferation, differentiation, and cell survival. By using green fluorescent protein (GFP) fusion proteins, we found that wild-type lambdaPKC localized predominantly to the cytoplasm, whereas both a kinase-defective mutant and an activation loop mutant accumulated in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal part of the zinc finger domain of lambdaPKC. Leptomycin B treatment induced rapid nuclear accumulation of GFP-lambda as well as endogenous lambdaPKC suggesting the existence of a CRM1-dependent nuclear export signal (NES). Consequently, we identified a functional leucine-rich NES in the linker region between the zinc finger and the catalytic domain of lambdaPKC. The presence of both the NLS and NES enables a continuous shuttling of lambdaPKC between the cytoplasm and nucleus. Our results suggest that the exposure of the NLS in both lambda- and zetaPKC is regulated by intramolecular interactions between the N-terminal part, including the pseudosubstrate sequence, and the catalytic domain. Thus, either deletion of the N-terminal region, including the pseudosubstrate sequence, or a point mutation in this sequence leads to nuclear accumulation of lambdaPKC. The ability of the two atypical PKC isoforms to enter the nucleus in HeLa cells upon leptomycin B treatment differs substantially. Although lambdaPKC is able to enter the nucleus very rapidly, zetaPKC is much less efficiently imported into the nucleus. This difference can be explained by the different relative strengths of the NLS and NES in lambdaPKC compared with zetaPKC.  相似文献   

13.
14.
15.
Many RNA-binding proteins (RBPs) dynamically shuttle between the nucleus and the cytoplasm, often exerting different functions in each compartment. Therefore, the nucleo-cytoplasmic distribution of RBPs has a strong impact on their activity. Here we describe the localization and the shuttling properties of the tandem zinc finger RBP dTIS11, which is the Drosophila homolog of mammalian TIS11 proteins. Drosophila and mammalian TIS11 proteins act as destabilizing factors in ARE-mediated decay. At equilibrium, dTIS11 is concentrated mainly in the cytoplasm. We show that dTIS11 is a nucleo-cytoplasmic shuttling protein whose nuclear export is mediated by the exportin CRM1 through the recognition of a nuclear export signal (NES) located in a different region comparatively to its mammalian homologs. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This NLS partially overlaps the second zinc finger ZnF2. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zinc ion unmask dTIS11 and TTP NLS and promote nuclear import. All together, our results indicate that the nuclear export of TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism may rely on a highly conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.  相似文献   

16.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.  相似文献   

17.
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.  相似文献   

18.
Small ubiquitin-related modifier (SUMO) proteins are conjugated to numerous polypeptides in cells, and attachment of SUMO plays important roles in regulating the activity, stability, and subcellular localization of modified proteins. SUMO modification of proteins is a dynamic and reversible process. A family of SUMO-specific proteases catalyzes the deconjugation of SUMO-modified proteins. Members of the Sentrin (also known as SUMO)-specific protease (SENP) family have been characterized with unique subcellular localizations. However, little is known about the functional significance of or the regulatory mechanism derived from the specific localizations of the SENPs. Here we identify a bipartite nuclear localization signal (NLS) and a CRM1-dependent nuclear export signal (NES) in the SUMO protease SENP2. Both the NLS and the NES are located in the nonhomologous domains of SENP2 and are not conserved among other members of the SENP family. Using a series of SENP2 mutants and a heterokaryon assay, we demonstrate that SENP2 shuttles between the nucleus and the cytoplasm and that the shuttling is blocked by mutations in the NES or by treating cells with leptomycin B. We show that SENP2 can be polyubiquitinated in vivo and degraded through proteolysis. Restricting SENP2 in the nucleus by mutations in the NES impairs its polyubiquitination, whereas a cytoplasm-localized SENP2 made by introducing mutations in the NLS can be efficiently polyubiquitinated, suggesting that SENP2 is ubiquitinated in the cytoplasm. Finally, treating cells with MG132 leads to accumulation of polyubiquitinated SENP2, indicating that SENP2 is degraded through the 26S proteolysis pathway. Thus, the function of SENP2 is regulated by both nucleocytoplasmic shuttling and polyubiquitin-mediated degradation.  相似文献   

19.
20.
60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran.GTP. Export of 60S subunits is coupled with that of the nucleo- cytoplasmic shuttling protein NMD3. Human NMD3 (hNMD3) contains a CRM-1-dependent leucine-rich nuclear export signal (NES) and a complex, dispersed nuclear localization signal (NLS), the basic region of which is also required for nucleolar accumulation. When present in Xenopus oocytes, both wild-type and export-defective mutant hNMD3 proteins bind to newly made nuclear 60S pre-export particles at a late step of subunit maturation. The export-defective hNMD3, but not the wild-type protein, inhibits export of 60S subunits from oocyte nuclei. These results indicate that the NES mutant protein competes with endogenous wild-type frog NMD3 for binding to nascent 60S subunits, thereby preventing their export. We propose that NMD3 acts as an adaptor for CRM1-Ran.GTP-mediated 60S subunit export, by a mechanism that is conserved from vertebrates to yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号