首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conserved actin-binding domain (Mr = 27,000) of rat hepatic actinogelin, rat skeletal muscle, and chicken gizzard alpha-actinins (Mimura, N., and Asano, A. (1986) J. Biol. Chem. 261, 10680-10687) was separated into two components having different isoelectric points (peptides A and B) by chromatofocusing. Thermolysin digestion of peptide A generated peptide B with concomitant loss of peptide A. Amino acid compositions and tryptic maps of peptides A and B also demonstrated that peptide A is a precursor of peptide B upon thermolysin digestion. All of peptides A and B retained the activity to bind with F-actin competitively to each other. By the gel-filtration method, it was also shown that the native actin-binding 27-kDa fragments are monomeric and globular. The non-actin-binding 50- or 53.5-kDa fragment of actinogelin/alpha-actinins was, however, found to be asymmetric and dimeric in the native state. Chemical cross-linking of the 27-kDa fragment with F-actin with a water-soluble carbodiimide produced at least four different complexes (I-IV). Chemical cleaving analysis of the cross-linked products (complexes I and II) indicated that the 27-kDa fragment possesses two possible binding sites on actin at the NH2-terminal residues 1-12 (for complex I) and at residues spanning 86-119 or 123 (for complex II).  相似文献   

2.
The complete 897-amino-acid sequence of chicken skeletal muscle alpha-actinin and the 856-amino-acid sequence (97% of the entire sequence) of chicken fibroblast alpha-actinin have been determined by cloning and sequencing the cDNAs. Genomic Southern analysis with the cDNA sequences shows that skeletal and fibroblast alpha-actinins are encoded by separate single-copy genes. RNA blot analyzes show that the skeletal alpha-actinin gene is expressed in the pectoralis muscle and that the fibroblast gene is expressed in the gizzard smooth muscle as well as in the fibroblast. The deduced skeletal alpha-actinin molecule has a calculated Mr of 104 x 10(3), and each alpha-actinin can be divided into three domains: (1) the NH2-terminal highly conserved actin-binding domain, which shows similarity to the product of the Duchenne's muscular dystrophy locus; (2) the middle rod-shaped dimer-forming domain, which contains the spectrin-type repeat units; and (3) the COOH-terminal two EF-hand consensus regions. Comparison of the skeletal alpha-actinin sequence with the fibroblast and smooth muscle alpha-actinin sequences demonstrated that the EF-hand structure was conserved in all of these alpha-actinin sequences, despite the reported variability of the Ca2+ sensitivities of the actin-gelation by various alpha-actinin isoforms.  相似文献   

3.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

4.
We report the purification and characterization of an active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II, derived from autophosphorylation and subsequent limited chymotryptic digestion of the purified rat forebrain soluble kinase. The purified fragment was completely Ca2+/calmodulin-independent, existed as a monomer, and phosphorylated synapsin I at the same sites as does the native form of Ca2+/calmodulin-dependent protein kinase II. Kinetic studies with the purified fragment revealed a more than 10-fold increase in Vmax and a 50% decrease in Km for synthetic peptide substrates, compared with native Ca2+/calmodulin-dependent protein kinase II. No 32P-labeled autophosphorylated residues were detected in the purified active fragment, indicating that the autophosphorylation sites were not contained within this fragment. Comparative studies of this active fragment (30 kDa) and its inactive counterpart (32-kDa fragment) revealed certain structural details of both fragments. Calmodulin-overlay study, immunoblot analysis, and direct amino acid sequencing suggest that both fragments contain the entire NH2-terminal catalytic domain and were generated by distinct cleavage within the regulatory domain. The putative cleavage sites for both fragments are discussed.  相似文献   

5.
A monoclonal antibody directed against the beta-subunit of dog kidney Na+,K+-ATPase was generated. Immunoblots demonstrate that monoclonal antibody III 18A binds exclusively to the denaturated beta-subunit. Binding experiments with membranes and whole cells reveal that III 18A binds to membranes but not to whole cells, indicating that the antibody binds to a cytoplasmic domain on the native beta-subunit. To localize the antibody-binding epitope, purified membrane-bound enzyme was fragmented by protease treatment. Tryptic digestion yields a 30-kDa fragment of the beta-subunit, which still retains the binding capacity for the antibody. Thus III 18A probably does not bind to the NH2-terminal segment of the protein. On the other hand, fragmentation of the beta-subunit with low concentrations of papain, which is known to yield a 40-kDa NH2-terminal and a 16-kDa COOH-terminal fragment, results in a complete loss of III 18A binding. These results suggest that the antibody-binding epitope is localized at or near a papain cleavage site on the COOH-terminal part of the beta-subunit. This is inconsistent with a structure model of the beta-subunit containing only a single transmembrane hydrophobic segment with a cytoplasmic NH2-terminal portion, but agrees quite well with a hypothetical structure with four intramembrane segments.  相似文献   

6.
Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.  相似文献   

7.
Calponin and tropomyosin interactions.   总被引:1,自引:0,他引:1  
The interaction between chicken gizzard calponin and tropomyosin was examined using viscosity, light scattering, electron microscopy and affinity chromatography. At neutral pH, 10 mM NaCl and in the absence of Mg2+, calponin induced tropomyosin filaments to form paracrystals thus decreasing the viscosity while increasing dramatically the light scattering of the tropomyosin solution. Electron micrographs of the uranyl acetate stained calponin-tropomyosin complex showed the presence of spindle shaped paracrystals with regular striation patterns and repeating units of about 400 A. Under similar conditions, smooth muscle caldesmon also induced tropomyosin to form paracrystals. To localize the calponin-binding site on tropomyosin, binding of fragments of tropomyosin, generated by chemical and mutational means, to a calponin-affinity column was studied. The COOH-terminal tropomyosin fragment Cn1B(142-281) and the NH2-terminal fragment CSM-beta(1/8/12-227) bound to a calponin-affinity column with an affinity similar to that of intact tropomyosin; while the NH2-terminal fragment, Cn1A(11-127), did not bind, indicating that the calponin-binding site(s) resides within residues 142-227 of tropomyosin. To determine the involvement in calponin binding of the area around Cys-190 of tropomyosin, fragments with cleavage sites near or at Cys-190 were used. Thus, while fragments Cy2(190-284) and CSM-beta(1/8/12-200) bound weakly to the calponin-affinity column, fragment Cy1(1-189) did not. These results demonstrate that calponin binds to tropomyosin between residues 142 and 227, and that the integrity of the region around Cys-190 of tropomyosin is important for strong interaction between the two proteins.  相似文献   

8.
This study investigated the subcellular compartmentalization of focal adhesion kinase (FAK) fragments and their regulation during apoptosis of human umbilical vein endothelial cells. A 50 kDa NH(2)-terminal FAK fragment and a 120 kDa FAK variant were constitutively expressed and specifically found in the nuclear fraction of cells, while a 55 kDa COOH-terminal FAK fragment was only in the cytosolic fraction. FAK cleavage fragments generated during apoptosisremained in the cytosol, while p120FAK and p50 NH(2)-terminal FAK remained in the nuclear compartment. The caspase inhibitor, ZVAD-fmk, prevented the apoptosis-induced proteolysis of p125 and p120FAK, generation of the 80 kDa cleavage product, and increased expression of p50N-FAK. Western blot with phospho-specific FAK showed that nuclear p125(FAK) was phosphorylated at a significant level at Y861, while FAK phosphorylated at Y397 and Y407 was largely in the cytosol. These results indicate that FAK NH(2)- and COOH-terminal domain fragments are segregated between nuclear and cytosolic compartments in endothelial cells and suggest novel functions for the FAK NH(2)-terminal domain.  相似文献   

9.
Two distinct alpha-actinin-like proteins were detected in chicken lung extract by immunoblot analysis with monoclonal antibodies against alpha-actinin. The mobilities of these proteins on SDS-polyacrylamide gel electrophoresis are very close (approximately 100 kDa). On SDS-polyacrylamide gel electrophoresis in the presence of 6 M urea, however, one of the proteins migrates at 115 kDa and is clearly separated from the other protein (105 kDa). The 115-kDa protein was purified and shown to have at least three unique amino acid sequences which were not detected in other kinds of alpha-actinins: one locates at the extreme NH2-terminal region, and the others locate at the COOH-terminal half region. Immunoblot and proteolytic cleavage analyses revealed that the 115-kDa protein has structural divergence at the COOH-terminal region that includes Ca(2+)-binding EF-hand motifs. Falling-ball viscometric studies showed that although the 115-kDa protein-induced gelation of F-actin is sensitive to Ca2+, the gelation activity of the 115-kDa protein is much higher than that of Ca(2+)-insensitive gizzard alpha-actinin regardless of Ca2+. This indicates that the 115-kDa protein is distinct from other nonmuscle alpha-actinins by its Ca2+ sensitivity.  相似文献   

10.
alpha-Actinin purified from chicken gizzard smooth muscle was characterized in comparison with alpha-actinins from chicken striated muscles, or fast-skeletal muscle, slow-skeletal muscle, and cardiac muscle. The gizzard alpha-actinin molecule consisted of two apparently identical subunits with a molecular weight of 100,000 on SDS-polyacrylamide gel electrophoresis, as do striated-muscle alpha-actinins. Its isoelectric points in the presence of urea were similar to the striated-muscle counterparts. Despite these similarities, distinctive amino acid sequences between smooth-muscle alpha-actinin and striated-muscle alpha-actinins were revealed by peptide mapping using limited proteolysis in SDS. Gizzard alpha-actinin was immunologically distinguished from striated-muscle alpha-actinins. Gizzard alpha-actinin formed bundles of gizzard F-actin as well as of skeletal-muscle F-actin, but could not form any cross-bridges between adjacent actin filaments under conditions where skeletal-muscle alpha-actinin could. Temperature-dependent competition between gizzard alpha-actinin and tropomyosin on binding to gizzard thin filaments was demonstrated by electron microscopic observations. Gizzard alpha-actinin promoted Mg2+-ATPase activity of reconstituted skeletal actomyosin, gizzard acto-skeletal myosin, and gizzard actomyosin. This promoting effect was depressed by the addition of gizzard tropomyosin. These findings imply that, despite structural differences between gizzard and striated-muscle alpha-actinin molecules, they function similarly in vitro, and that gizzard alpha-actinin can interact not only with smooth-muscle actin (gamma- and beta-actin) but also with skeletal-muscle actin (alpha-actin).  相似文献   

11.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

12.
M-Protein (165 kDa) is a structural constituent of myofibrillar M-band in striated muscle. We generated a monoclonal antibody which recognized a 165-kDa protein from chicken pectoralis muscle in immunoblot analysis and stained the M-band under immunofluorescence microscopy. By screening a lambda gt11 cDNA library from chicken embryonic pectoralis muscle with this antibody, we isolated a cDNA clone encoding the M-protein. Northern blot analysis showed that M-protein mRNA is expressed in pectoralis and cardiac muscle but not in gizzard smooth muscle or non-muscle tissues. Moreover, the anterior latissimus dorsi muscle, which consists almost exclusively of slow fiber types, contains no detectable levels of the mRNA. The full-length cDNA sequence predicted a 1,450-amino acid polypeptide with a calculated molecular weight of 163 x 10(3). The encoded protein contains several copies of two different repetitive motifs: five copies of fibronectin type III repeats are in the middle part of the predicted molecule, and two and four copies of the immunoglobulin C2-type repeats are located toward the NH2-terminal and COOH-terminal regions, respectively. This indicates that M-protein, along with other thick filament-associated proteins such as C-protein, twichin, and titin, belongs to the superfamily of cytoskeletal proteins with immunoglobulin/fibronectin repeats.  相似文献   

13.
Actin and tubulin binding domains of synapsins Ia and Ib   总被引:2,自引:0,他引:2  
Synapsins Ia and Ib are neuronal phosphoproteins involved with the regulated clustering of small synaptic vesicles at the presynaptic terminus. In vitro they bind and bundle filaments of both actin and tubulin. Previously, we identified an actin binding domain in the NH2-terminal 25-kDa fragment (N25) generated by 2-nitro-5-thiocyanobenzoic acid (NTCB) cleavage of synapsin I and found that a complementary COOH-terminal 52-kDa portion of the molecule (N52) contained either a second actin binding site or a site of self-association [Petrucci, T. P., & Morrow, J. S. (1987) J. Cell. Biol. 105, 1355]. Using direct binding assays between actin, tubulin, and specific synapsin NTCB-derived peptides, we confirm the ability of purified N25 to bind but not bundle actin and demonstrate that the complementary N52 (or N50) fragments from synapsins Ia and Ib and a 14-kDa fragment derived from the middle of the molecule also associate directly with actin. An antibody specific for N25 inhibits the actin binding activity of N25 and the actin bundling but not the actin binding activity of intact synapsin I. Similar studies conducted with purified tubulin and tubulin immobilized on Sepharose demonstrate that both tubulin and actin bind at approximately the same sites in the NH2-terminal half of synapsin I. Although the fragments derived from the COOH terminus of both synapsin Ia and synapsin Ib (N40b/N34) were devoid of measurable actin binding activity after NTCB cleavage, they were specifically labeled in the intact molecule by a photoactivated cross-linker bound to F-actin. Collectively, these results indicate that synapsins Ia and Ib possess two actin and tubulin binding domains located in the NH2-terminal half of the molecule and suggest that a third actin binding domain is located in the COOH-terminal region. The NH2-terminal sites are found in NTCB peptides N25 and N14, while the third site, apparently of lower affinity, resides in N40b/N34. It is hypothesized that, in the intact molecule, the two NH2-terminal domains contribute to a single high-affinity actin and/or tubulin binding site in the "globular" head region of synapsin I, while the third actin binding domain constitutes the topographically distinct site required for the actin bundling activity of the native molecule. The 45-residue COOH extension that distinguishes synapsin Ia from synapsin Ib appears not to be involved with actin binding, since no differences were found in the ability of N40b and N34 to be photo-cross-linked to actin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Domain structure of the HSC70 cochaperone, HIP.   总被引:1,自引:0,他引:1  
The domain structure of the HSC70-interacting protein (HIP), a 43-kDa cytoplasmic cochaperone involved in the regulation of HSC70 chaperone activity and the maturation of progesterone receptor, has been probed by limited proteolysis and biophysical and biochemical approaches. HIP proteolysis by thrombin and chymotrypsin generates essentially two fragments, an NH2-terminal fragment of 25 kDa (N25) and a COOH-terminal fragment of 18 kDa (C18) that appear to be well folded and stable as indicated by circular dichroism and recombinant expression in Escherichia coli. NH2-terminal amino acid sequencing of the respective fragments indicates that both proteases cleave HIP within a predicted alpha-helix following the tetratricopeptide repeat (TPR) region, despite their different specificities and the presence of several potential cleavage sites scattered throughout the sequence, thus suggesting that this region is particularly accessible and may constitute a linker between two structural domains. After size exclusion chromatography, N25 and C18 elute as two distinct and homogeneous species having a Stokes radius of 49 and 24 A, respectively. Equilibrium sedimentation and sedimentation velocity indicate that N25 is a stable dimer, whereas C18 is monomeric in solution, with sedimentation coefficients of 3.2 and 2.3 S and f/f(o) values of 1.5 and 1.1 for N25 and C18, respectively, indicating that the N25 is elongated whereas C18 is globular in shape. Both domains are able to bind to the ATPase domain of HSC70 and inhibit rhodanese aggregation. Moreover, their effects appear to be additive when used in combination, suggesting a cooperation of these domains in the full-length protein not only for HSC70 binding but also for chaperone activity. Altogether, these results indicate that HIP is made of two structural and functional domains, an NH2-terminal 25-kDa domain, responsible for the dimerization and the overall asymmetry of the molecule, and a COOH-terminal 18-kDa globular domain, both involved in HSC70 and unfolded protein binding.  相似文献   

15.
Collagenase cleavage of human Type II and III collagens has been studied using a highly purified preparation of rabbit tumor collagenase. Progress of the reactions in solution was followed by viscometry and the results indicated that under the conditions employed Type III collagen molecules were cleaved at approximately five times the rate of Type II molecules. Cleavage products of the reactions were isolated in denatured form by agarose molecular sieve chromatography. The molecular weights and amino acid compositions of the products demonstrated that Type II and III molecules had been cleaved at the characteristic three-quarter, one-quarter locus, giving rise to a large fragment derived from the NH2-terminal portion of the molecule and a smaller fragment representing the COOH-terminal region. The amino acid sequence at the NH2-terminal portion of the smaller fragment derived from Type II collagen was determined to be Ile-Ala-Gly-Gln-Arg, and the corresponding region from Type III collagen was found to have the sequence Leu-Ala Gly-Leu-Arg. These sequences for alpha1(II) and alpha1(III) chains adjacent to the site of collagenase cleavage along with previous data for alpha1(I) and alpha2 chains indicate that the minimum specific sequence required for collagenase cleavage is Gly-Ile-Ala or Gly-Leu-Ala. Inspection of the available sequence data for collagen alpha chains indicates that the latter sequences are found in at least three additional locations at which collagenase cleavage does not occur. Each of the sequences which are apparently not substrates for collagenase, however, are followed by a Gly-X-Hyp sequence. We suggest, then, that a minimum of five residues in collagen alpha chains COOH-terminal to the cleavage site comprise the substrate recognition site.  相似文献   

16.
We have isolated, after limited proteolysis of the bactericidal/permeability-increasing protein (BPI) of human neutrophils, a 25-kDa fragment that possesses the bactericidal and envelope-altering activities of the 60-kDa parent protein. On a molar basis, the fragment is as potent as holo-human BPI against rough Escherichia coli, is more potent than holo-BPI against more resistant smooth E. coli, and retains the specificity of BPI toward Gram-negative bacteria. NH2-terminal amino acid sequence analysis shows that the fragment is derived from the NH2 terminus of the BPI molecule. These findings suggest that all of the molecular determinants of the antibacterial properties of BPI reside within the NH2-terminal 25-kDa segment, implying a novel structural/functional organization for a cytotoxic protein.  相似文献   

17.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

18.
Adseverin (74-kDa protein, scinderin) is a calcium- and phospholipid-modulated actin-binding protein that promotes actin polymerization, severs actin filaments, and caps the barbed end of the actin filament, with its NH2-terminal half retaining these properties (Sakurai, T., Kurokawa, H., and Nonomura, Y. (1991) J. Biol. Chem. 266, 4581-4585). Further proteolysis of this NH2-terminal half generated five fragments, and two of them (Mr 15,000 and 31,000) showed Ca(2+)-dependent binding to monomeric actin. The Mr 31,000 fragment especially caused actin filament fragmentation, although its severing activity was also inhibited by several acidic phospholipids as was found in adseverin and its NH2-terminal half. Amino acid sequencing demonstrated that the two fragments' NH2 terminus were blocked in the same manner as the NH2 terminus of adseverin, and thus these two fragments are possibly located at the NH2-terminal of the adseverin molecule. This would then indicate that NH2-terminal fragments had a Ca(2+)-sensitive actin-binding function that relates to actin severing. The other two fragments' NH2-terminal sequencing showed a similar homology to the amino acid sequences of gelsolin and villin. Based on these observations, we propose that adseverin has a functional domain structure similar to that of the gelsolin and villin core.  相似文献   

19.
Isolation and characterization of a cDNA encoding a chick alpha-actinin   总被引:7,自引:0,他引:7  
We have isolated and sequenced a 2.1-kilobase cDNA encoding 86% of the sequence of alpha-actinin. The cDNA clone was isolated from a chick embryo fibroblast cDNA library constructed in the expression vector lambda gt11. Identification of this sequence as alpha-actinin was confirmed by immunological methods and by comparing the deduced protein sequence with the sequence of several CNBr fragments obtained from adult chicken smooth muscle (gizzard) alpha-actinin. The deduced protein sequence shows two distinct domains, one of which consists of four repeats of approximately 120 amino acids. This region corresponds to a previously identified 50-kDa tryptic peptide involved in formation of the alpha-actinin dimer. The last 19 residues of C-terminal sequence display an homology with the so-called E-F hand of Ca2+-binding proteins. Hybridization analysis reveals only one size of mRNA (approximately 3.5 kilobases) in fibroblasts, but multiple bands in genomic cDNA.  相似文献   

20.
The cyanogen bromide fragment, N-DSK, containing the NH2-terminal portions of the three chains of fibrinogen, was found to exist in dimeric and polymeric forms. These different forms gave rise to identical chain fragments on reduction and alkylation. The B beta chain of N-DSK from fibrinogen and the beta chain of N-DSK from fibrin were isolated and characterized. The B beta chain fragment has a blocked NH2-terminal residue, and fibrinopeptide B is released on digestion with thrombin. The beta chain fragment has glycine as NH2-terminal residue. The molecular weight of the B beta chain fragment is 12200 as determined by ultracentrifugal analysis. Gel electrophoresis in sodium dodecyl sulphate gave the molecular weights of 14000 and 13000 for the B beta chain and beta chain fragments, respectively. The NH2-terminal B beta chain fragment consists of 118 amino acid residues and the beta chain fragment of 104 residues. The amino acid sequence of beta chain fragment is identical to B beta chain fragment except for the fibrinopeptide B portion. The isolation of a B beta-related fragment (B beta +), with a molecular weight of 30000, is also reported. The presence of B beta + was explained on the basis of incomplete cleavage at the Met-118 residue during treatment with cyanogen bromide. Some functional aspects of the B beta chain fragment are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号