共查询到18条相似文献,搜索用时 93 毫秒
1.
【目的】筛选与酵母乙酸耐受性状紧密相关的微卫星分子标记。【方法】以两株表型差异菌株YHA和YLA作为亲本构建F2代菌株共计160株,选取15个微卫星位点通过PCR方法在40株子代中扩增产物,利用SPSS 11.5软件分析耐酸性状与微卫星序列间的相关性。【结果】找到3个与乙酸耐受性性状相关的微卫星位点,其中位点14P2与酵母乙酸耐受性状有极显著的正相关性(P<0.01),15P2和15P3与酵母乙酸耐受性具有显著的负相关性(P<0.01和P<0.05);此外对于微卫星位点14P2,耐酸亲本YHA在该位点的基因片段(344 bp)在子代耐酸菌株中出现频率达到70.6%,而不耐酸亲本YLA的基因片段(331 bp)在子代不耐酸菌株中出现的频率达91.3%。【结论】微卫星14P2的等位基因在子代菌株中的遗传具有明显的偏好性,该微卫星位点与某种耐酸基因存在一定的连锁遗传,为酵母分子标记辅助育种提供了有价值的遗传标记。 相似文献
2.
【背景】乙酰辅酶A是酿酒酵母异源合成番茄红素的重要中间产物,胞质中乙酰辅酶A主要来自乙酰辅酶A合成酶催化乙酸合成。【目的】通过外源添加乙酸盐结合调控乙酸胁迫应答基因增加胞内乙酰辅酶A含量,改善细胞生长,促进番茄红素合成。【方法】在合成番茄红素的重组酵母菌中过表达乙酰辅酶A合成酶编码基因(acs2),在发酵过程中添加10g/L乙酸盐,结合转录组学分析挖掘乙酸胁迫响应基因,进行单一和组合调控。【结果】添加乙酸盐后,重组菌Y02中番茄红素含量增加了19.14%,但细胞生长受到抑制,转录组学结果表明adk2、fap7、hem13、elo3、pdc5、set5、pmt5、hst4、clb2和swe1表达水平增加,因此构建了单基因和双基因过表达菌株,其中Y02-set5-hst4菌在添加乙酸盐后细胞生长得到了显著改善,同时胞内乙酰辅酶A浓度提高了78.21%,番茄红素含量和产量达到12.62 mg/g-DCW和108.67 mg/L,与对照菌Y02相比分别提高了42.76%和67.13%。同时该菌中甲羟戊酸途径中关键基因erg12、erg20和hmg1的表达量与对照菌相比分别上调了1.70、1.4... 相似文献
3.
在真核生物染色质中,作为核心组蛋白的H2A是构成核小体重要组分,其变体之一H2A.Z高度保守,对真核细胞生物的生命活动有重要意义. 模式生物酿酒酵母中的H2A.Z被称作Htz1. 在对多种生物H2A.Z的研究中,以对酿酒酵母组蛋白变体Htz1的探讨最为深入全面. 本文将从多个方面详细介绍酿酒酵母Htz1对基因表达调控的作用机制,涵盖其蛋白结构、染色质上的定位、翻译后修饰、结合机制、生物功能及其分子伴侣的作用等,并对未来该领域需要解决的重要科学问题进行了展望. 相似文献
4.
5.
乙酸是生物质乙醇发酵过程中酵母细胞面临的重要抑制剂之一,对细胞生长及发酵性能有强烈的抑制作用。增强酵母菌对乙酸胁迫的耐受性对提高乙醇产率具有重要意义。用分别带有完整絮凝基因FLO1及其重复序列单元C发生缺失的衍生基因FLO1c的重组表达质粒分别转化非絮凝型工业酿酒酵母CE6,获得絮凝型重组酵母菌株6-AF1和6-AF1c。同时以空载体p YCPGA1转化CE6的菌株CE6-V为对照菌株。与CE6-V相比,絮凝酵母明显提高了对乙酸胁迫的耐受性。在0.6%(V/V)乙酸胁迫下,6-AF1和6-AF1c的乙醇产率分别为对照菌株CE6-V的1.56倍和1.62倍;在1.0%(V/V)乙酸胁迫下,6-AF1和6-AF1c的乙醇产率分别为对照菌株CE6-V的1.21倍和1.78倍。可见絮凝能力改造能明显提高工业酿酒酵母的乙酸胁迫耐受性及发酵性能,而且FLO1内重复序列单元C缺失具有更加明显的效果。 相似文献
6.
【目的】本论文研究酿酒酵母srp4039突变基因对酵母细胞异丁醇耐受性的影响。【方法】首先,以酿酒酵母野生型W303-1A和突变株EMS39染色体DNA为模板克隆野生型SRP40基因和srp4039突变基因;然后,将野生型SRP40基因和srp4039突变基因分别连接到质粒YCplac22上,构建质粒YCplac22-SRP40和YCplac22-srp4039。将质粒YCplac22-SRP40、YCplac22-srp4039以及YCplac22空质粒分别转化入野生型酿酒酵母W303-1A中,分别得到W303-1A-SRP40工程菌、W303-1A-srp4039工程菌和W303-1A-control工程菌。将3株工程菌分别置于含1.0%异丁醇、1.3%异丁醇、8.0%乙醇和0.5%异戊醇的CM培养基中进行发酵,测定细胞密度(OD600)和生长情况,并计算2–10 h的比生长速率(μ)。将3株工程菌于55°C热激4 min后做稀释... 相似文献
7.
酿酒酵母乙酸耐性分子机制的功能基因组进展 总被引:4,自引:0,他引:4
提高工业酿酒酵母对高浓度代谢产物及原料中的毒性底物等环境胁迫因素的耐受性,对提高工业生产效率具有重要的意义。乙酸是纤维素原料水解产生的主要毒性副产物之一,其对酵母细胞的生长和代谢都具有较强的抑制作用,因此,对酿酒酵母乙酸耐性分子机制的研究可为选育优良菌种提供理论依据。近年来,通过细胞全局基因表达分析和代谢组分析,以及对单基因敲除的所有突变体的表型组研究,对酿酒酵母乙酸耐性的分子机制有了更多新的认识,揭示了很多新的与乙酸毒性适应性反应和乙酸耐性提高相关的基因。综述了近年来酿酒酵母乙酸耐性的基因组规模的研究进展,以及在此基础上构建乙酸耐性提高的工业酵母菌的代谢工程操作。结合本课题组的研究,对金属离子锌在酿酒酵母乙酸耐性中的作用进行了深入分析。未来对酿酒酵母乙酸耐性分子机理的认识及改造将深入到翻译后修饰和合成生物学等新的水平,所获得的认知,将为选育可高效进行纤维素原料生物转化、高效生产生物燃料和生物基化学品的工业酿酒酵母的菌株奠定理论基础。 相似文献
8.
9.
10.
11.
12.
13.
【目的】木糖发酵是纤维素燃料乙醇生产的一个关键瓶颈,同时木质纤维素水解液中的乙酸严重抑制酿酒酵母的木糖发酵过程,因此通过基因工程手段提高菌株对木糖的利用以及对乙酸的耐受性具有重要意义。本研究以非氧化磷酸戊糖途径(PPP途径)中关键基因转醛醇酶基因(TAL1)为研究对象,探讨了3种不同启动子PTDH3、PAHP1和PUBI4,控制其表达对菌株利用木糖和耐受乙酸的影响。【方法】通过同源重组用3种启动子替换酿酒酵母基因工程菌NAPX37的TAL1基因的启动子PTAL1,再通过孢子分离和单倍体交配构建了纯合子,利用批次发酵比较了在以木糖为唯一碳源和混合糖(葡萄糖和木糖)为碳源条件下,3种启动子控制TAL1基因表达导致的发酵和乙酸耐受能力的差异。【结果】启动子PTDH3、PAHP1和PUBI4在不同程度上提高了TAL1基因的转录水平,提高了菌株对木糖的利用速率及乙酸耐受能力,提高了菌株在60 mmol/L乙酸条件下的葡萄糖利用速率。在以木糖为唯一碳源且无乙酸存在、以及混合糖为碳源的条件下,PAHP1启动子控制TAL1表达菌株的发酵结果优于PTDH3和PUBI4启动子的菌株,PAHP1启动子控制的TAL1基因的转录水平比较合适。在木糖为唯一碳源且乙酸为30 mmol/L时,PUBI4启动子控制TAL1基因表达的菌株发酵结果则优于PAHP1和PTDH3启动子菌株,此时PUBI4启动子控制的TAL1的转录水平比较合适。【结论】启动子PTDH3、PAHP1和PUBI4不同程度地提高TAL1基因的表达,在不同程度上改善了酵母菌株的木糖发酵速率和耐受乙酸性能,改善程度受发酵条件的影响。 相似文献
14.
D5-脂肪酸脱氢酶是合成花生四烯酸的关键酶。根据已报道的D 5-脂肪酸脱氢酶基因设计引物, 分别从三角褐指藻基因组DNA和总cDNA中扩增得到1520 bp和1410 bp的特异片段, 序列分析结果显示, 结构基因中含有一个大小为110 bp的内含子, 这是国内外首次报道。将D5-脂肪酸脱氢酶基因亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0中, 在大肠杆菌中筛选到含有目的片段的重组质粒pYPTD5, 用电击转化的方法将重组质粒pYPTD5转化到营养缺陷型酿酒酵母菌株INVSc1中, 在缺省培养基中筛选得到酿酒酵母转化菌株YPTD5。在合适的培养条件下, 添加外源底物双高g-亚麻酸和诱导物半乳糖, 培养并收集菌体。通过脂肪酸甲酯气相色谱分析, 表明三角褐指藻D5-脂肪酸脱氢酶基因在酿酒酵母中获得了高效的表达, 将双高g-亚麻酸转化为花生四烯酸, 其底物转化率达到了45.9%。 相似文献
15.
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium 总被引:1,自引:0,他引:1
N V Narendranath K C Thomas W M Ingledew 《Journal of industrial microbiology & biotechnology》2001,26(3):171-177
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R
2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of
the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were
added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that
of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1%
w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased
rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised.
In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of
consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was
extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to
evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data
were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and
lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177.
Received 06 June 2000/ Accepted in revised form 21 September 2000 相似文献
16.
17.