首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Woody plants growing in cerrado and forest communities of south-east Brasil were found to have low levels of nitrate reductase activity in their leaves suggesting that nitrate ions are not an important nitrogen source in these communities. Only in the leaves of species growing in areas of disturbance, such as gaps and forest margins, were high levels of nitrate reductase present. When pot-grown plants were supplied with nitrate, leaves and roots of almost all species responded by inducing increased levels of nitrate reductase. Pioneer or colonizing species exhibited highest levels of nitrate reductase and high shoot: root nitrate reductase activities. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase were present in leaves and roots of the species examined.15N-labelled nitrate and ammonium were used to compare the assimilatory characteristics of two species:Enterolobium contortisiliquum, with a high capacity to reduce nitrate, andCalophyllum brasiliense, of low capacity. The rate of nitrate assimilation in the former was five times that of the latter. Both species had similar rates of ammonium assimilation. Results for eight species of contrasting habitats showed that leaf nitrogen content increased in parallel with xylem sap nitrogen concentrations, suggesting that the ability of the root system to acquire, assimilate or export nitrate determines shoot nitrogen status. These results emphasise the importance of nitrogen transport and metabolism in roots as determinants of whole plant nitrogen status.  相似文献   

2.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

3.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

4.
Abstract At an applied nitrate concentration of 1 mol m?3, the proportion of xylem sap nitrogen as nitrate was < 15% for Cajanus cajan, Lupinus albus and Trifolium repens, 33% for Pisum sativum and within the range 57–62% for Glycine max, Phaseolus vulgar is, Stellaria media and Xanthium strumarium. At an applied nitrate concentration of 10 mol m~3 the value had increased to 66% for T. repens while at 20 mol m?3 nitrate values had increased to 46, 51 and 49% for C. cajan, L. albus and Pisum sativum, respectively, and 89% and 85% for 5. media and X. strumarium, respectively. Glycine max and Phaseolus vulgaris differed from the other species in that the proportion of their xylem sap nitrogen as nitrate remained constant (~ 60%) as applied nitrate concentration increased from 1 to 20 mol m?3. The proportion of total plant nitrate reductase activity in the shoot of C. cajan, S. media and X. strumarium increased as applied nitrate concentration increased from 1 to 20 mol m?3. Values at the lower and upper concentrations were, respectively, 26 and 72% for C. cajan. 48 and 80% for X. strumarium and 68 and 87% for S. media. The partitioning of nitrate assimilation between root and shoot in these species is discussed.  相似文献   

5.
Root-shoot interactions in mineral nutrition   总被引:9,自引:0,他引:9  
In this paper four classes of co-operative root-shoot interations are addressed. (I) Nitrogen concentrations in the xylem sap originating from the root and in the phloem sap as exported from source leaves are much lower than those required for growth by apices and developing organs. Enrichment of xylem sap N is achieved by xylem to xylem (X-X) transfer, by which reduced N, but not nitrate, is abstracted from the xylem of leaf traces and loaded into xylem vessels serving the shoot apex. Nitrogen enrichment of phloem sap from source leaves is enacted by transfer of reduced N from xylem to phloem (X-P transfer). Quantitative data for the extent of the contribution of X-X and X-P transfer to the nutrition of young organs of Ricinus communis L. and for their change with time are presented. (II) Shoot and root cooperate in nitrate reduction and assimilation. The partitioning of this process between shoot and root is shifted towards the root under conditions of nitrate- and K-deficiency and under salt stress, while P deficiency shifts nitrate reduction almost totally to the shoot. All four changes in partitioning can be attributed to the need for cation-anion balance during xylem transport and the change in electrical charge occurring with nitrate reduction. (III) Even maintenance of the specificity of ion uptake by the root may – in addition to its need for energy – require a shoot-root interaction. This is shown to be needed in the case of the maintenance of K/Na selectivity under the highly adverse condition of salt stress and absence of K supply from the soil. (IV) Hormonal root to shoot interactions are required in the whole plant for sensing mineral imbalances in the soil. This is shown and addressed for conditions of salt stress and of P deficiency, both of which lead to a strong ABA signalling from root to shoot but result in different patterns of response in the shoot.  相似文献   

6.
Translocation of nitrogen in osmotically stressed wheat seedlings   总被引:2,自引:1,他引:1  
Wheat (Triticum aestivum L., cv. Drabant) seedlings were grown in a ‘split root’ system where either the whole root system or one root half was subjected to osmotic stress for 24 h, using 200 g polyethylene glycol (PEG, molecular weight 4000) dm?3 nutrient solution. 15N-Labelled nitrate was fed to one of the root compartments and total N and 15N-labelling were measured in plant material and xylem sap. Untreated plants translocated 87% of the N taken up to the shoot, and 10% of this was then retranslocated back to the root. Recalculated on a root nitrogen basis, 36% of the label recovered in the root after 24 h had passed through the shoot. Significant labelling of xylem sap collected from non-labelled roots indicated cycling of organic N through the roots. PEG-treatment of the whole root system caused significant water loss in both roots and shoots. Uptake of nitrate and retranslocation of N to roots were inhibited, whereas cycling of organic nitrogen through the root was still measurable. Treatment of half the root system with PEG had minor effects on shoot water content, but reduced the water content of the treated root part. The total uptake of nitrate by the root system was unaffected, and the effect on the treated root half was comparatively small. Nitrate reductase activity (NRA) declined in PEG-treated roots even if high nitrate uptake rates were maintained. Shoot NRA was unaffected by osmotic stress. The data indicate that the reduction in water content of the root per se has only small effects on nitrate uptake. Major inhibition of nitrate uptake was observed only after treatment of a sufficiently large portion of the root system to given an effect on shoot water content.  相似文献   

7.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

8.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

9.
We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant). When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production. The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars ( Caspar et al. 1986 ; W. Schulze et al. 1991 ). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency. In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.  相似文献   

10.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

11.
Summary Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.Dedicated to Prof. Dr. Karl Mägdefrau, Deisenhofen, on the ocasion of his 80th birthday  相似文献   

12.
A fast-growing normal and a slow-growing gibberellin-deficient mutant of Lycopersicon esculentum (L.) Mill. cv. Moneymaker were used to test the hypothesis that slow-growing plants reduce NO3? in the root to a greater extent than do fast-growing plants. Plants that reduce NO3? in the root may grow more slowly due to the higher energetic and carbon costs associated with root-based NO3? reduction compared to photosynthetically driven shoot NO3? reduction. The plants were grown hydroponically with a complete nutrient solution containing 10 mM NO3? and the biomass production, gas exchange characteristics, root respiratory O2 consumption, nitrate reductase activity and translocation of N in the xylem were measured. The gibberellin-deficient mutants accumulated more total N unit?1 dry weight than did the faster-growing normal plants. There were no significant differences between the genotypes in the rates of photosynthesis expressed on a leaf dry weight basis. The plants differed in the proportion of photosynthetic carbon available to growth due to a greater proportion of daily photo-synthate production being consumed by respiration in the slow-growing genotype. This difference in allocation of carbon was associated with differences in the specific leaf area and specific root length. In addition, a greater leaf weight ratio in the fast-growing than in the slow-growing plants indicates a greater investment of carbon into biomass supporting photosynthetic production in the former. We did not find differences in the activity or distribution of nitrate reductase or in the N composition of the xylem sap between the genotypes. We thus conclude that the growth rate was determined by the efficiency of carbon partitioning and that the site of NO3? reduction and assimilation was not related to the growth rate of these plants.  相似文献   

13.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   

14.
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1 first lower phase - NR nitrate reductase - NRA nitrate-reductase activity - PM plasma membrane - T:p Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio - U2 second upper phase  相似文献   

15.
Glutamine synthetase (GS) exists as two main isoforms in plants, a cytosolic form (GSI) and a chloroplast or plastidie form (GS2). Fifty-five species of legume, representing a phylogenetically diverse group of tropical and temperate species, were screened by western blotting for the presence of GS2 in their roots. A remarkably strong correlation was found between the climatic origin of the species and the presence or absence of a GS2-like polypeptide in the root. Root GS2 was found in all 31 temperate species examined (30 papilionoids, one caesalpinoid), but was not detected in any of the 17 tropical papilionoid species. It was also absent in the roots of four out of seven tropical non-papil-ionoid species. The ‘in vivo’ NR activities of roots, stems and leaves of 46 of the legume species were analysed to establish their major site of nitrate reduction, and the ratio of nitrate: reduced N in the xylem sap was determined for some species, but no clear correlation between possession of a root GS2 and a preference for root nitrate assimilation was found. We discuss the possibility that expression of GS2 in the root was part of a more extensive physiological adaptation to root nitrate assimilation that evolved in temperate species to suit the alkaline, nitrate rich soils found in the centres of origin in temperate latitudes.  相似文献   

16.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

17.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

18.
Ricinus plants were supplied with nutrient solutions containingdifferent N-sources or different nitrate concentrations andwere also exposed to mild salinity. Between 41 and 51 d aftersowing, the ratio of inorganic to total nitrogen in xylem andphloem saps, the content of inorganic nitrogen and malate intissues, and nitrate reductase activities were determined. Theflows of nitrate, ammonium, and malate between root and shootwere modelled to identify the site(s) of inorganic nitrogenassimilation and to show the possible role of malate in a pH-statmechanism. Only in the xylem of nitrate-fed plants did inorganicnitrogen, in the form of nitrate, play a role as the transportsolute. The nitrate percentage of total nitrogen in the xylemsap generally increased in parallel with the external nitrateconcentration. The contribution of the shoot to nitrate reductionincreased with higher nitrate supply. Under salt treatment relativelymore nitrate was reduced in the root as compared with non-treatedplants. Ammonium was almost totally assimilated in the root,with only a minor recycling via the phloem. Nitrate reductaseactivities measured in vitro roughly matched, or were somewhatlower than, calculated rates of nitrate reduction. From therates of nitrate reduction (OH -production) and rates of malatesynthesis (2H+-production) it was calculated that malate accumulationcontributed 76, 45, or 39% to the pH-stat system during nitratereduction in plants fed with 0.2, 1.0 or 4.0 mM nitrate, malateflow in the phloem played no role. In tissues of ammonium-fedplants no malate accumulation was found and malate flows inxylem and phloem were also relative low. Key words: Ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrate reductase, nitrogen assimilation, malate  相似文献   

19.
Summary Feeding experiments using 15N2 or 15NO3 are described investigating the transport of nitrogen in the field pea (Pisum arvense L.). Nitrogen assimilated by root or nodules moves preferentially upwards to the shoot through the xylem. Parts of the root below or distal to a region of assimilation can benefit from this nitrogen but do so to a much greater extent when the shoot is left attached than when it has been removed. A considerable proportion of the nitrogen received by a shoot from the root or nodules is apparently returned to the root in the translocation stream, this cycled nitrogen being especially important in the nutrition of outlying parts of nodulated roots growing in media lacking combined nitrogen.Nitrogen from nitrate fed to a mature leaf is exported in quantity to all parts of the plant except older regions of the shoot. Leaf and stem segments immediately above the fed leaf, and the root and its nodules receive large shares of this nitrogen, although the root's share declines noticeably as the plant ages.The root appears to be extremely inactive in transferring nitrogen from the downward translocation stream across to the stream of nitrogen leaving the root in the xylem. This may act as a major obstacle to the free circulation and mixing of nitrogen within the plant body.A scheme is proposed embracing the main quantitative features of the transport system for nitrogen in the species.  相似文献   

20.
Legumes of the Phaseoleae ( Glycine max L. Merr., Phaseolus coccineus L., P. vulgaris L., Vigna radiata L. Wilczek and V. unguiculata L. Walp.), when grown on 10 m M nitrate, had a low in vitro nitrate reductase (NR) activity in the root compared to the shoot (<15%). In legumes of the Vicieae ( Cicer aerietinum L., Pisum sativum L. and Vicia faba L.), Genisteae ( Lupinus albus L.) and Trifolieae ( Medicago sativa L. and M. truncatula Gaertn.), 30–60% of their total NR activity was in the root. The Phaseoleae had a higher nitrate content in the shoot. Decreasing the nitrate supply increased the relative proportion of NR activity in the root of garden pea ( Pisum sativum ) and wheat but did not alter the predominantly leaf-based assimilation of nitrate in Phaseolus vulgaris. When in vitro NR activity of the pea shoot was compared with the in vivo NR activity and the rate of accumulation of reduced N by this tissue, similar values were obtained. In vitro NR activity of the wheat shoot was 5 times its in vivo NR activity and 12 times its rate of accumulation of reduced N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号