首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lectin with affinity to galactose was purified to homogeneity from the hemolymph of diapausing pupae of the Chinese oak silk moth, Anteraea pernyi. The molecular mass of this lectin was 380,000 and it formed an oligomeric structure of a subunit with a molecular mass of 38,000. The hemagglutinating activity in the hemolymph was found to increase with time after immunization with E. coli. Studies with antibody against the purified lectin showed that increase in the hemagglutinating activity was due to the same lectin, suggesting that the amount of the lectin increased in response to intrusion of foreign substances. The function of this lectin in the defence mechanism is discussed.  相似文献   

2.
The galactose binding protein implicated in transport and in chemotaxis has been purified to homogeneity from the shock fluids of Salmonella typhimurium and Escherichia coli. Both proteins are monomers of molecular weight 33 000 and exhibit cross-reactivity with antibody. The Salmonella galactose receptor showed binding of 1 mol of [14C]galactose or 1 mol of [14C]glucose at saturation. The dissociation constants were 0.38 and 0.17 muM, respectively. In light of the previously published report that the E. coli protein contains two binding sites with two different affinities, the binding characteristics of this protein were reexamined. Using highly purified radiolabeled substrate and homogeneous protein, a single binding site and single binding affinity were seen galactose (KD = 0.48 muM) or for glucose (KD = 0.21 muM). The competition between glucose and galactose for the same site is intriguing in view of the competition between ribose and galactose at the receptor level.  相似文献   

3.
A mouse monoclonal antibody directed against one of the major human brain gangliosides, GD1b, has been produced. The antibody binds specifically to the carbohydrate structure of GD1b as it does not react with structurally related gangliosides like GM1, GD2, GT1b or Fuc-GM1, or any other ganglioside of human brain. The results further indicate that terminal galactose as well as the disialosyl group linked to the inner galactose moiety are involved in binding to the antibody.  相似文献   

4.
B M Gmeiner 《Enzyme》1988,39(4):213-219
The ability of Co2+ to substitute for Mn2+ in exogenous and endogenous galactosyltransferase reactions was tested. Exogenous transfer was measured towards different high and low molecular weight galactose acceptors using galactosyltransferase from the following sources: crude serum, the serum enzyme partially purified by affinity chromatography and a pure enzyme preparation from milk. Endogenous transfer was estimated in preparations from human urinary bladder tumor cells and from rat liver microsomal fractions. The results show that Co2+ is able to substitute for Mn2+ in some exogenous and endogenous galactosyltransferase reactions. This ability seems to depend on the molecular structure of the galactose acceptor as well as on the nature of the enzyme.  相似文献   

5.
This paper presents the steric configuration of a polysaccharide obtained from the latex of the Japanese lacquer tree. Thus, the polysaccharide consisted of galactose and galacturonic acid, and the main chain of polysaccharide was proved to be linked with 1 → 3 linkage of galactose residue of 6-O-galacturonosyl galactose unit by the periodate oxidation method. The molecular weight was calculated to be 6 × 104 by Archibald’s ultracentrifugal method. The configuration of the polysaccharide was discussed to be α helical structure of which one turn of the helices consists of 6 to 7 6-O-galacturonosyl galactose units and the diameter of the helix is 21 Å and one pitch is 9.5 Å on the basis of viscosity measurements, color reaction with iodine, crystallization with capronic acid and consideration of molecular models.  相似文献   

6.
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific fucose and/or galactose residues.  相似文献   

7.
A galactose-specific lectin has earlier been isolated from the seeds of Dolichos lablab in our laboratory by conventional protein purification methods. We now established conditions to bind the lectin on Sepharose-galactose gel in the presence of 1.5 M ammonium sulfate in Tris-buffered saline, pH 7.4. It can be specifically eluted with 0.3 M galactose. The purified lectin is a glycoprotein, binds to Con A, agglutinates erythrocytes, and has an apparent native molecular weight of 120 +/- 5 kDa. In SDS-PAGE under reducing conditions, it dissociates into two subunits of molecular mass (Mr) 31 and 29 kDa. Among a number of sugars tested for inhibitory activity of the lectin, galactose was found to be a potent inhibitor. Rabbit polyclonal antibody to the purified lectin specifically reacted with the lectin subunits in Western blot analysis and additionally, an antibody raised to the isolated 31 kDa subunit show reactivity with both the subunits. Amino terminal sequences of both the subunits are identical. The purified lectin is stable up to 40 degrees C with a pH optimum of 7.4. The lectin has a high content of acidic amino acids and lacks sulfur-containing amino acids. Chemical modification of the lectin with group-specific reagents indicates the possible role of histidine, lysine, and tyrosine residues in lectin activity.  相似文献   

8.
9.
Patients with Chagas' disease or different clinical forms of leishmaniasis (cutaneous or visceral) have elevated galactosyl alpha (1-3)galactose antibodies. Using colloidal gold immunocytochemistry--monoclonal antibody gal-13 (specific for lipid-linked galactosyl alpha (1-3)galactose residues) and anti-nidogen antibodies and lectin cytochemistry (Bandeiraea simplicifolia IB4), both techniques specific for demonstrating galactosyl alpha (1-3)galactose residues--we have found terminal disaccharide residues on the Trypanosoma cruzi external surface of Vero cell-derived trypomastigotes but not in intact epimastigotes (although disrupted epimastigotes strongly stained), in the lips of the flagellar pocket, and on the parasitic side exactly opposite to the flagellar pocket in amastigote and promastigote forms of American Leishmania. These results resemble those obtained using anti-laminin antibodies in both trypanosomatids. In addition, results obtained with anti-nidogen antibodies seem to recognize in Trypanosoma cruzi and American Leishmania culture forms another different unknown terminal disaccharide. These results confirm the presence of terminal galactosyl alpha (1-3)galactose residues in both trypanosomatids, and that rabbit anti-laminin antibodies are indeed also recognizing galactosyl alpha (1-3)galactose residues as demonstrated for human circulating antibody. The presence of abundant galactosyl alpha (1-3)galactose residues on Trypanosomatid family members suggests a specific unknown role in parasite physiology for this terminal disaccharide.  相似文献   

10.
The monoclonal antibody LU-BCRU-G7, that was generated by invitro immunization, shows clinical value as a prognostic markerin early stage breast carcinoma. It has now been characterizedwith regard to its binding epitope. Using a recently describedmethod based on the construction of N-substituted polyacrylamide(PAA) derivatives of carbohydrates (pseudopolysaccharides),the structure of the epitope for the monoclonal antibody LU-BCRU-G7has been determined. Competitive binding assays and inhibitoryenzyme-linked immunosorbent assays (ELISAs) using these pseudopolysaccharideshave shown the LU-BCRU-G7 epitope to be a disaccharide Galß1-3GlcNAc(Lec; where Gal is D-galactose, Glc is D-glucose and GlcNAcis N-acetyl-D-glucosainine). Both galactose and N-acetyl glucosaminemoieties are essential for binding. Substitution on C-2 or C-3of the terminal galactose abolished binding, as did galactose-terminated oligosaccharides. The galactose moiety alone, asexpressed by the Galß-PAA conjugate, appeared to hea more important feature of the epitope than the GlcNAc-PAAconjugate, which failed to bind or inhibit the LU-BCRU-G7 antibody.In the N-acetyl glucosamine moiety, binding was decreased butnot eliminated by fucose substitution, as in Lea, or changein configuration of C-4, as in Galß1-3GlcNAc. Omissionof the NAc group resulted in complete loss of activity. Thetetrasaccharide lacto-N-tetraose, although containing the terminalLec disaccharide, does not react with the antibody, suggestingconformational interference of the binding site. These findingsshow that the monoclonal antibody LU-BCRU-G7 recognizes a terminalisolactosamine fragment on a tumour-associated glycoprotein,which we have previously shown to be inversely related to survivalin breast cancer. breast cancer Galß1-3GlcNAc LU-BCRU-G7 monoclonal antibody pseudopolysaccharides  相似文献   

11.
The enzyme which catalyzes the transfer of galactose from UDP-galactose to lactosylceramide (LacCer) was obtained in a 32,000-fold purified and apparently homogeneous form from rat liver by a procedure involving affinity chromatography on UDP-hexanolamine-Sepharose and LacCer-Sepharose. The enzyme is composed of two nonidentical subunits whose apparent molecular weights are 65,000 and 22,000. Methylation and hydrolysis of the product formed by incubation of the enzyme with UDP-galactose and [3H]LacCer yielded 2,3,6-tri-O-methyl-[3H]galactose, indicating that a galactose residue was introduced to position C-4 of the terminal galactose of the LacCer. The product also specifically reacted with monoclonal antibody directed to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). This indicates that the purified enzyme is exclusively alpha 1-4-galactosyltransferase. Studies on substrate specificity indicate that the purified enzyme is highly specific for the synthesis of GbOse3Cer and is clearly distinct from the enzymes responsible for the formation of iGbOse3Cer (Gal alpha 1-3Gal beta 1-4Glc-Cer) and blood group-B substance, which possess alpha 1-3 galactosidic linkages at the nonreducing termini. The enzyme is also distinct from the alpha 1-4-galactosyltransferase which catalyzes the formation of galabiaosylceramide (Gal alpha 1-4Gal beta 1-1Cer) and IV4Gal-nLacOse4 (P1 antigen). These studies represent the first report of the properties of a highly purified alpha-galactosyltransferase catalyzing the transfer of sugar residues to glycolipids.  相似文献   

12.
Soluble extracts of quail intestine scrapings contain a lectin activity specific for chicken and rabbit trypsinized, glutaraldehyde-fixed erythrocytes. The lectin displayed a specificity for the simple sugar haptens lactose and galactose and for mucin. Quail lectin was purified by affinity chromatography on either asialofetuin- or mucin-Sepharose, followed by DEAE-Sepharose chromatography, and demonstrated an apparent molecular weight of 14,500 on sodium dodecyl sulfate - polyacrylamide gel electrophoresis and a pI of 6.2 upon isoelectric focusing. Immunohistochemical localization of this lectin in the intestine was carried out using polyclonal antibody raised in rabbits and tested for specificity in Western blots. Immunoperoxidase staining for quail lectin showed the lectin to be prominent in secretions at the mucosal surface and in goblet cells.  相似文献   

13.
We report the structure of the Fc fragment of rabbit IgG at 1.95 A (1 A=0.1 nm) resolution. Rabbit IgG was the molecule for which Porter established the four-chain, Upsilon-shaped structure of the antibody molecule, and crystals of the Fc ('Fragment crystallisable') were first reported almost 50 years ago in this journal [Porter, R. R. (1959) Biochem. J. 73, 119-126]. This high-resolution analysis, apparently of the same crystal form, reveals several features of IgG-Fc structure that have not previously been described. More of the lower hinge region is visible in this structure than in others, demonstrating not only the acute bend in the IgG molecule that this region can mediate, as seen in receptor complexes, but also that this region has a tendency to adopt a bent structure even in the absence of receptor. As observed in other IgG-Fc structures, the Cgamma2 domains display greater mobility/disorder within the crystals than the Cgamma3 domains; unexpectedly the structure reveals partial cleavage of both Cgamma2 intra-domain disulphide bonds, whereas an alternative conformation for one of the cysteine residues in the intact bridge within the more ordered Cgamma3 domains is observed. The N-linked oligosaccharide chains at Asn(297) are well-defined and reveal two alternative conformations for the galactose units on each of the alpha(1-6)-linked branches. The presence of this galactose unit is important for stabilizing the structure of the entire branched carbohydrate chain, and its absence correlates with the severity of autoimmune conditions such as rheumatoid arthritis in both human clinical studies and in a rabbit model of the disease. Rabbit IgG, through this high-resolution structure of its Fc region, thus continues to offer new insights into antibody structure.  相似文献   

14.
The cultivation of Silene vulgaris (M.) G. callus culture on the nutrient mediums contained carbohydrates, phytohormones, nitrogen, and phosphate has led to the modification of the arabinogalactan structure from the cell walls. It was noticed that a sucrose concentration increase in the cultivation medium led to an increase of the arabinogalactan fragment yield with a molecular weight more than 300 kDa and a decrease of the yield of fragments with molecular weight less than 300 kDa. The sucrose concentration increase in the nutrient medium entailed the increase of arabinose and galactose content in the fragment with the molecular weight more than 300 kDa and a decrease in the fragment with a molecular weight of 100–300 kDa. On the nutrient medium containing a mix of sucrose and arabinose, the yield of the fraction with a molecular weight more than 300 kDa and the amount of arabinose residues increased, and the yield of minor fragments and the content of arabinose and galactose residues, included in these, decreased. On the medium containing an increased concentration of 2,4-dichlorphenoxyacetic acid, the yield of high-molecular fragment and the content of arabinose residues are two times increased. The decreasing of the amount of arabinose and galactose residues in the fragment with a molecular weight more than 300 kDa was observed at a lack of nitrogen or phosphate in the nutrient medium.  相似文献   

15.
The structure of N-linked glycosylation is a very important quality attribute for therapeutic monoclonal antibodies. Different carbon sources in cell culture media, such as mannose and galactose, have been reported to have different influences on the glycosylation patterns. Accurate prediction and control of the glycosylation profile are important for the process development of mammalian cell cultures. In this study, a mathematical model, that we named Glycan Residues Balance Analysis (GReBA), was developed based on the concept of Elementary Flux Mode (EFM), and used to predict the glycosylation profile for steady state cell cultures. Experiments were carried out in pseudo-perfusion cultivation of antibody producing Chinese Hamster Ovary (CHO) cells with various concentrations and combinations of glucose, mannose and galactose. Cultivation of CHO cells with mannose or the combinations of mannose and galactose resulted in decreased lactate and ammonium production, and more matured glycosylation patterns compared to the cultures with glucose. Furthermore, the growth rate and IgG productivity were similar in all the conditions. When the cells were cultured with galactose alone, lactate was fed as well to be used as complementary carbon source, leading to cell growth rate and IgG productivity comparable to feeding the other sugars. The data of the glycoprofiles were used for training the model, and then to simulate the glycosylation changes with varying the concentrations of mannose and galactose. In this study we showed that the GReBA model had a good predictive capacity of the N-linked glycosylation. The GReBA can be used as a guidance for development of glycoprotein cultivation processes.  相似文献   

16.
Ugl-Y is a glycoprotein that is detected in normal urine samples from young men and women aged 0 to 17 years. It was purified by ammonium sulfate precipitation and various column chromatographies including affinity chromatography using anti-adult urine antibody coupled to Sepharose 4B. The homogeneity of the glycoprotein was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, column chromatography on Sephadex G-75, and the precipitation reaction with anti-Ugl-Y antibody. It was shown to have a molecular weight of 29,000 by gel filtration, and to contain 5.2% neutral sugars (mannose and galactose) and 4% hexosamine (glucosamine). Amino acid analysis of the glycoprotein indicated high contents of acidic and hydroxylic amino acids. Its origin is unknown.  相似文献   

17.
松杉灵芝发酵菌丝体经热水提取,冻融分级及乙醇二次分级,分离纯化出GFb级份,电泳及凝胶柱层析示其为均一多糖,分子量为9.8万。小于子实体多糖相应级份。 GFb经红外光谱,气相色谱,气质联机,碳13核磁共振,高碘酸盐氧化,Smith降解,甲基化及部分酸水解分析,确定其基本结构中主链为1→6葡萄糖基和1→6半乳糖基构戍,二者之比为1∶1,分支点在0-3位上,分枝点率为50%,与子实体多糖GF_3相同,侧链由1→3葡萄糖基,1→4葡萄糖基,末端葡萄糖基及末端半乳糖基构成,分子中分枝率为55.6%,较子实体多糖GF_3分枝率略低,分枝链略短。  相似文献   

18.
McCorvie TJ  Timson DJ 《IUBMB life》2011,63(9):694-700
Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.  相似文献   

19.
Hemagglutinin from influenza A/PR8 virus was purified after treatment of the virus with sodium deoxycholate followed by extraction with tri-n-butyl phosphate. This fully disrupted the virus while preserving hemagglutinating activity. The hemagglutinin was obtained in the form of small aggregates that could be separated from other viral components. Purified hemagglutinin was hydrolyzed to determine carbohydrate composition and digested with Pronase to analyze oligosaccharide structures. Sugars present in the hemagglutinin were galactose, mannose, fucose, and glucosamine in molar rates of about 6:11:2:5, and these comprised 16% of the hemagglutinin glycoprotein. Oligosaccharides obtained from virus included a major component of a molecular weight of 2,800, composed of glucosamine, galactose, mannose, and fucose, and a minor heterogenous component of a molecular weight of 1,500 to 2,000, containing predominantly mannose. The 2,800-molecular-weight oligosaccharide was a constituent of the hemagglutinin, and treatment of this large oligosaccharide with specific exo-glycosidases demonstrated the presence of terminal galactose and fucose and allowed the deduction of a general structure for this component.  相似文献   

20.
The human monoclonal autoantibody HF2-1/17, produced by a human-human hybridoma derived from lymphocytes of a lupus patient with thrombocytopenia, reacts with single stranded DNA and platelets. To determine the chemical nature of the autoantigen against which this antibody is directed on platelets, this platelet antigen was purified by the lipid extraction of sonicated platelets, DEAE-Sephadex chromatography, and high performance liquid chromatography. The purified glycolipids, a trace component in platelets, demonstrated high reactivity with the HF2-1/17 antibody using a competition enzyme-linked immunosorbent assay system or immunostaining of thin layer chromatograms. The purified glycolipids co-migrated with bovine sulfatides by thin layer chromatography. The purified glycolipids contain sulfate and galactose but not sialic acid or phosphate. Fast atom bombardment-mass spectrometry revealed these sulfatides to be sulfated monohexyl ceramides. The dominant species has a molecular weight of 794 while a minor form has a molecular weight of 812 due to an extra hydroxyl group and loss of a double bond. These results indicate that the platelet autoantigen against which the human monoclonal anti-DNA antibody is directed represents a family of novel monogalactosyl sulfatides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号