首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The origin and evolution of intron-exon structures continue to be controversial topics. Two alternative theories, the ‘exon theory of genes’ and the ‘insertional theory of introns’, debate the presence or absence of introns in primordial genes. Both sides of the argument have focused on the positions of introns with respect to protein and gene structures. A new approach has emerged in the study of the evolution of intron-exon structures: a population analysis of genes. One example is the statistical analysis of intron phases — the position of introns within or between codons. This analysis detected a significant signal of exon shuffling in the DNA sequence database containing both ancient and modern exon sequences: intron phase correlations, that is, the association together within genes of introns of the same phase. The results of this analysis suggest that exon shuffling played an important role in the origin of both ancient and modern genes.  相似文献   

2.
Adaptive mutations appear in response to selection. In the best-studied system, the two most controversial issues were resolved this year. The mutations are neither Lamarckian nor a peculiarity of bacterial sex, as had been suggested. They occur genome-wide in a hypermutable subpopulation of stressed cells. Genomic ‘hot’ and ‘cold’ regions may explain previous failures to detect similar mutations in other systems and at other sites. Stationary phase specific limitation of mismatch repair has also been discovered.  相似文献   

3.
4.
Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the ‘protein intron’ is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.  相似文献   

5.
The giant vesicle is becoming an object of intense scrutiny by chemists, biologists, and physicists who are interested in membrane behavior. Recent advances include new models to explain morphological changes, new experimental methods for studying vesicle adhesion, layering and adsorption, and new cataloging of ‘cytomimetic’ processes.  相似文献   

6.
Use of model systems to explore the forces that control β sheet formation was stymied for many years by the perception that small increments of β sheet necessarily aggregate. Recently, however, a number of short peptides (9–16 residues in length) that fold into two-stranded antiparallel β sheets (‘β hairpins’) have been reported; several short peptides (20–24 residues in length) that fold into three-stranded antiparallel β sheets have also been described. These model systems are beginning to provide fundamental insights into the origins of β sheet conformational stability.  相似文献   

7.
Nucleomorphs are the vestigial nuclear genomes of eukaryotic algal cells now existing as endosymbionts within a host cell. Molecular investigation of the endosymbiont genomes has allowed important insights into the process of eukaryote/eukaryote cell endosymbiosis and has also disclosed a plethora of interesting genetic phenomena. Although nucleomorph genomes retain classic eukaryotic traits such as linear chromosomes, telomeres, and introns, they are highly reduced and modified. Nucleomorph chromosomes are extremely small and encode compacted genes which are disrupted by the tiniest spliceosomal introns found in any eukaryote. Mechanisms of gene expression within nucleomorphs have apparently accommodated increasingly parsimonious DNA usage by permitting genes to become co-transcribed or, in select cases, to overlap.  相似文献   

8.
Databases for biologists are becoming increasingly important. Some of these can be regarded as ‘core’ resources, such as the bibliographic databases, whereas others are of greater interest to specialists. As comparative genomics develops, however, even databases limited in their scope (e.g. to a single organism) are of great interest to a wider community.  相似文献   

9.
Metazoan phylogeny is in a state of ferment, stirred by the addition of new molecular trees as well as controversial interpretations of molecular ‘clocks’. Concerning the latter topic, the clocks recurrently point to divergence times substantially older than the known fossil record. Some attempt reconciliation by appealing to a conveniently cryptic interval prior to the first fossils. This effectively reduces the fossil record to an erratic search-light giving only glimpses into the true evolutionary history. Other options, however, remain open. Molecular clocks may themselves run erratically and what happens in molecular history may not coincide with the emergence of body plans.  相似文献   

10.
Recent studies provide further support for the hypothesis that spatial representations of limb position, target locations, and potential motor actions are expressed in the neuronal activity in parietal cortex. In contrast, precentral cortical activity more strongly expresses processes involved in the selection and execution of motor actions. As a general conceptual framework, these processes may be interpreted in terms of such formalisms as sensorimotor transformation and ‘internal models’.  相似文献   

11.
Phylogenetic and exon–intron structure analyses of intra- and interspecific fungal subtilisins in this study provided support for a mixed model of intron evolution: a synthetic theory of introns-early and introns-late speculations. Intraspecifically, there were three phase zero introns in Pr1A and its introns 1 and 2 located at the highly conserved positions were phylogentically congruent with coding region, which is in favor of the view of introns-early speculation, while intron 3 had two different sizes and was evolutionarily incongruent with coding region, the evidence for introns-late speculation. Noticeably, the subtilisin Pr1J gene from different strains of M. ansiopliae contained different number of introns, the strong evidence in support of introns-late theory. Interspecifically, phylogenetic analysis of 60 retrievable fungal subtilisins provided a clear relationship between amino acid sequence and gene exon–intron structure that the homogeneous sequences usually have a similar exon–infron structure. There were 10 intron positions inserted by highly biased phase zero introns across examined fungal subtilisin genes, half of these positions were highly conserved, while the others were species-specific, appearing to be of recent origins due to intron insertion, in favor of the introns-late theory. High conservations of positions 1 and 2 inserted by the high percentage of phase zero introns as well as the evidence of phylogenetic congruence between the evolutionary histories of intron sequences and coding region suggested that the introns at these two positions were primordial.Reviewing Editor:Dr. Manyuan Long  相似文献   

12.
Comparative chromosome painting has shown that synteny has been conserved for large segments of the genome in various placental mammals. Advances such as spectral karyotyping and multicolour ‘bar coding’ lend speed and precision to comparative molecular cytogenetics. Reciprocal chromosome painting and hybridisations with probes such as yeast artificial chromosomes, cosmids, and fibre fluorescence in situ hybridisation allow subchromosomal assignments of chromosome regions and can identify breakpoints of rearranged chromosomes. Advances in molecular cytogenetics can now be used to test the hypothesis that chromosome rearrangement breakpoints in human pathology and in evolution are correlated.  相似文献   

13.
Recent research has focused on proteins important for early steps in replication in eukaryotes, and particularly on Cdc6/Cdc18, the MCMs, and Cdc45. Although it is still unclear exactly what role these proteins play, it is possible that they are analogous to initiation proteins in prokaryotes. One specific model is that MCMs form a hexameric helicase at replication forks, and Cdc6/Cdc18 acts as a ‘clamp-loader’ required to lock the MCMs around DNA. The MCMs appear to be the target of Cdc7-Dbf4 kinase acting at individual replication origins. Finally, Cdc45 interacts with MCMs and may shed light on how cyclin-dependent kinases activate DNA replication.  相似文献   

14.
The near simultaneous radiation of the major eukaryotic evolutionary assemblages — plants, animals, fungi, and at least three other complex protist assemblages worthy of ‘kingdom level’ status — was preceded by the divergence of many independent protist lineages. The earliest branches are represented by organisms that do not contain mitochondria or plastids, suggesting that the primitive eukaryotic state did not include these organelles. New information about nuclear-coded proteins that localize in the mitochondrion, however, suggests that the ancestral symbionts for mitochondria were present in the first eukaryotes. Phylogenetic support for this hypothesis is persuasive but it is not possible to account for the relative times of divergence for mitochondria and their ancestral symbionts relative to eukaryotic branching patterns inferred from nuclear genes.  相似文献   

15.
Conservation versus parallel gains in intron evolution   总被引:10,自引:1,他引:9  
Orthologous genes from distant eukaryotic species, e.g. animals and plants, share up to 25–30% intron positions. However, the relative contributions of evolutionary conservation and parallel gain of new introns into this pattern remain unknown. Here, the extent of independent insertion of introns in the same sites (parallel gain) in orthologous genes from phylogenetically distant eukaryotes is assessed within the framework of the protosplice site model. It is shown that protosplice sites are no more conserved during evolution of eukaryotic gene sequences than random sites. Simulation of intron insertion into protosplice sites with the observed protosplice site frequencies and intron densities shows that parallel gain can account but for a small fraction (5–10%) of shared intron positions in distantly related species. Thus, the presence of numerous introns in the same positions in orthologous genes from distant eukaryotes, such as animals, fungi and plants, appears to reflect mostly bona fide evolutionary conservation.  相似文献   

16.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

17.
Cryptophytes are unicellular eukaryotic algae that acquired photosynthesis secondarily through the uptake and retention of a red-algal endosymbiont. The plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was recently sequenced and found to contain a genetic element similar to a group II intron. Here, we explore the distribution, structure and function of group II introns in the plastid genomes of distantly and closely related cryptophytes. The predicted secondary structures of six introns contained in three different genes were examined and found to be generally similar to group II introns but unusually large in size (including the largest known noncoding intron). Phylogenetic analysis suggests that the cryptophyte group II introns were acquired via lateral gene transfer (LGT) from a euglenid-like species. Unexpectedly, the six introns occupy five distinct genomic locations, suggesting multiple LGT events or recent transposition (or both). Combined with structural considerations, RT–PCR experiments suggest that the transferred introns are degenerate ‘twintrons’ (i.e. nested group II/group III introns) in which the internal intron has lost its splicing capability, resulting in an amalgamation with the outer intron.  相似文献   

18.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

19.
20.
Humans and non-human primates have several motor areas. Exactly how many is a matter of current debate. A proper parcellation of motor areas must be based on correlated structural and functional differences. Recent studies indicate that the primary motor cortex may be, in reality, two areas (4a and 4p). Similarly, there are undoubtedly two or more cingulate motor areas and perhaps two supplementary motor areas. The homologies between human and monkey brains are striking in some cases, making monkey models of human motor cortices attractive. The doctrine of a strict ‘homuncular’ somatotopical organization of motor areas will have to be abandoned. The engagement of motor areas in different types of voluntary seems merely a matter of degree of activation rather than exclusive specific contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号