首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The way in which the huge Australian parasite fauna is described (discovery and naming) is the subject of this address. The approach to the task has never been well-organised so that a few groups of parasites are now relatively well-known because of the efforts of small groups of workers who have made sustained efforts in these groups, but equally some host-parasite systems have been almost completely ignored in that no worker has ever given them sustained attention. A high proportion of Australian parasites have been described by international workers. The sustaining of interest in a group of parasites over a long period is the key to real progress being made. The nature of the organisation of Australian science presently means that few positions are available for parasite taxonomists and funding for taxonomic research is scarce. Thus, parasite taxonomy (like the taxonomy of many groups of Australian plants and animals) can only be considered to be in crisis.  相似文献   

2.
The phylum Nematoda consists of over half a million species of worms that inhabit astoundingly diverse environments. Nematodes can live as obligatory parasites of plants and animals, or alternate a parasitic with a free-living life style. The fact that the vast majority of species are strictly free living often surprises parasitology students, for obviously the highest research priorities in this field have involved parasites of medical, veterinary and agricultural importance. Here Samuel Politz and Mario Philipp contend that some basic questions concerning the biology of the parasite cuticle can be investigated more easily and in greater depth in the free-living nematode Caenorhabditis elegans than in the parasites themselves.  相似文献   

3.
4.
Concepts of the basic case reproduction rate of malaria, or the vectorial capacity of malaria vectors, tend to assume that the behaviour of infected and non-infected mosquitoes will be similar. However, recent years have seen a series of studies demonstrating that mosquitoes infected with malaria or other parasites show many pathological features with important effects on their behaviour and on the transmission dynamics of the parasite. Parasitology Today will be featuring a series of reports discussing these effects and attempting to unravel the expected effects on parasite transmission dynamics; this article sets the scene.  相似文献   

5.
6.
The Hamilton and Zuk hypothesis on haemoparasite-mediated sexual selection and certain studies of reproductive costs are based on the assumption that avian blood parasite infections are detrimental to their hosts. However, there is no experimental evidence demonstrating harmful effects of blood parasites on fitness in wild populations, it even having been suggested that they may be non-pathogenic. Only an experimental manipulation of natural blood parasite loads may reveal their harmful effects. In this field experiment we reduced through medication the intensity of infection by Haemoproteus majoris and the prevalence of infection by Leucocytoazoon majoris in blue tits (Parus caeruleus), and demonstrated detrimental effects of natural levels of infection by these common parasite species on host reproductive success and condition. The fact that some of the costs of infection were paid by offspring indicates that blood parasites reduce parental working capacity while feeding nestlings. Medicated females may be able to devote more resources to parental care through being released from the drain imposed upon them by parasites and/or through a reduced allocation to an immune response. Therefore, this work adds support to previous findings relating hosts' life-history traits and haematozoan infections.  相似文献   

7.
It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis) on mice (Peromyscus leucopus), we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated.  相似文献   

8.
The genome projects represent one of the most important developments in our knowledge of parasites. However, translation of this knowledge into an understanding of parasite biology and then on to drugs, vaccines and other healthcare developments for the diseases will need some élan and clarity of thought by scientists and funding organizations. Only then will the activity associated with post-genomics be turned from what I have termed 'genome babble' to real opportunities in understanding these parasites.  相似文献   

9.
Intravital microscopy allows imaging of biological phenomena within living animals, including host–parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host–parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa‐associated lymphoid tissue, and present a view into possible future applications.  相似文献   

10.
Cancrini G  Iori A 《Parassitologia》2004,46(1-2):173-176
The development of new technological methods surely improves the quality of the Diagnostic Services in Parasitology offered to the National Sanitary Service, however, cost and simplicity have not to be neglected, even when the prime consideration is efficiency. Moreover, the mere fact that something can be done by one of these new approaches does not mean that it should be done that way or that it is most cost-effective to do it that way. A review of diagnostic tools in Parasitology is proposed, to evaluate when and why each of them should be applied. Traditional procedures for the diagnosis of parasitosis are only based on the "direct" recovery and recognition of the parasite, with the microscope as main tool and few other instruments as co-operator. The innovative procedures, recently adjusted on the basis of new scientific knowledge and made possible by the development of the laboratory instrument weapons, can evidence the parasites both directly and indirectly. If it is obvious that the direct identification of a pathogen is more reliable than that indirect, is not so evident what is the most useful direct method, and when it would be better to use indirect diagnostic tools. Advantages and disadvantages of each procedure, cost as well as the purpose of the test (diagnosis, post-treatment, research), and the general condition in which the test have to been applied must be taken into account when we are choosing. In general, we can say that the rationale for their use can be summarised as follows: 1) The macroscopic/microscopic analysis of samples is always recommended (with the exception of samples coming from tissues that need surgery). This "old" procedure allows the identification in 20 minutes of all the parasites present in mixed infections, and the evaluation of the parasite load. It is a cost-effective method which relies ultimately on the skill of the observer to detect and identify parasite stages; 2) Parasite antigen detection is an innovative and expensive immunological diagnostic, which can suffer of sensitivity and specificity. It could be useful to directly diagnose "occult" infections; 3) Parasite DNA/RNA direct detection is an innovative, sensitive and specific procedure, which can also identify sibling species. It is expensive, therefore its use is restricted to reference laboratories; 4) Host antibody detection is an innovative indirect tool to evaluate the presence of a parasite by means the evaluation of the host response to infection. It can suffer of sensitivity and specificity, and the interpretation of the test results may be difficult. It could be applied as first step to evaluate the presence of tissue parasites, whose direct diagnosis would require surgery. Some tests can be performed in well-equipped laboratories; other tests are available through research laboratories. The specimens, appropriately collected and preserved, have always to be processed in security for potential risk of infection hazard, and submitted to tests appropriate to the laboratory's goals, where, therefore, field and research diagnostic tools shouldn't be applied. The test selected for routine use has to be chosen taking into account value and limitations of each method. Reduction in excessive and often unnecessary testing is mandatory, and therefore it is critical for the clinical Parasitology to perform relevant testing while maintaining appropriate quality. To date, the microscopic analysis of samples is the only direct method that allows all identifications in short times, at a reduced cost, independently from geographical origin and peculiar status of the patient. It has to be regarded as the first step in diagnostic procedures for all laboratories. Some molecular techniques have greater sensitivity than traditional methods, but at least at the present time, their costs may well preclude their routine use. It is difficult to know, exactly, where diagnostic Parasitology will be moving in the next few years, although many soothsayers feel very strongly that the area of molecular diagnostics will replace more traditional means. It is also possible that immunological or perhaps cytometric procedures will replace our more standard diagnostic approach; nevertheless they will continue to remain oddities on the outside of the general practice and be confined to a few reference laboratories. As far as semi-automated or automated instruments and robotics-based techniques, they are useful when large numbers of the same test are performed. Supposing that they will enter in our laboratory, that will happen in central facility rather than in each local facility. So, the great interest in using new technological methods to solve old problems probably will have to be seen in the right perspective.  相似文献   

11.
Analyses of mitochondrial cytochrome b diversity among avian blood parasites of the genera Haemoproteus and Plasmodium suggest that there might be as many lineages of parasites as there are species of birds. This is in sharp contrast to the approximately 175 parasite species described by traditional methods based on morphology using light microscopy. Until now it has not been clear to what extent parasite mitochondrial DNA lineage diversity reflects intra- or interspecific variation. We have sequenced part of a fast-evolving nuclear gene, dihydrofolate reductase-thymidylate synthase (DHFR-TS), and demonstrate that most of the parasite mitochondrial DNA lineages are associated with unique gene copies at this locus. Although these parasite lineages sometimes coexist in the same host individual, they apparently do not recombine and could therefore be considered as functionally distinct evolutionary entities, with independent evolutionary potential. Studies examining parasite virulence and host immune systems must consider this remarkable diversity of avian malaria parasites.  相似文献   

12.
In recent years there has been an increasing number of papers showing how parasitism and pollution can interact with each other in aquatic organisms. Among the variety of investigated aspects especially the combined effects of pollution and simultaneous infection on the health of aquatic hosts (molluscs, crustaceans, fish, mammals) is of considerable interest. Effects of pollution on the occurrence and distribution of parasites is another interesting field of "Environmental Parasitology" attracting increasing attention. This mini-review presents some promising examples of interdisciplinary studies paying attention to the fact that under natural conditions no organism will only be affected by either parasites or pollution.  相似文献   

13.
Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence.  相似文献   

14.
Molecular biology has provided parasitologists with a fantastic variety of techniques that have had a major impact on research into parasites and parasitism. Molecular tools have revealed the extent and nature of genetic diversity in parasites and this information has made a significant contribution to studies on the population genetics and evolutionary biology of parasites. Similarly, epidemiology has benefited enormously from the application of molecular tools in terms of studying parasite life cycles and transmission, and in the development of specific and sensitive methods for diagnosis and surveillance. However, the theme I wish to develop in this paper is concerned with the contribution molecular tools have made to parasite taxonomy and systematics, and in particular, the fact that in many cases molecular tools are validating the proposals made many years ago by taxonomists and biologists which were discounted or not fully accepted at the time. To do this I have chosen four examples (Echinococcus, Entamoeba, Giardia, Cryptosporidium) where recent research involving molecular characterisation has confirmed observations made many years ago and has resulted in a need to revise the taxonomy of different groups of parasites.  相似文献   

15.
Past research on parasites and community ecology has focussed on two distinct levels of the overall community. First, it has been shown that parasites can have a role in structuring host communities. They can have differential effects on the different hosts that they exploit, they can directly debilitate a host that itself is a key structuring force in the community, or they can indirectly alter the phenotype of their host and change the importance of the host for the community. Second, certain parasite species can be important in shaping parasite communities. Dominant parasite species can directly compete with other parasite species inside the host and reduce their abundance to some extent, and parasites that alter host phenotype can indirectly make the host more or less suitable for other parasite species. The possibility that a parasite species simultaneously affects the structure of all levels of the overall community, i.e. the parasite community and the community of free-living animals, is never considered. Given the many direct and indirect ways in which a parasite species can modulate the abundance of other species, it is conceivable that some parasite species have functionally important roles in a community, and that their removal would change the relative composition of the whole community. An example from a soft-sediment intertidal community is used to illustrate how the subtle, indirect effects of a parasite species on non-host species can be very important to the structure of the overall community. Future community studies addressing the many potential influences of parasites will no doubt identify other functionally important parasite species that serve to maintain biodiversity.  相似文献   

16.
Conservation strategies depend on our understanding of the ecosystem and community dynamics. To date, such understanding has focused mostly on predator–prey and competitor interactions. It is increasingly clear, however, that parasite–host interactions may represent a large, and important, component of natural communities. The need to consider multiple factors and their synergistic interactions if we are to elucidate the contribution of anthropogenic factors to loss in biodiversity is exemplified by research into present-day amphibian declines. Only recently has the role of factors such as trematode parasite infections been incorporated into studies of the population and community dynamics of aquatic systems. We argue that this is due, at least in part, to difficulties faced by aquatic ecologists in sifting through the complex systematics that pervade the parasite literature. We note that two trematode species are of dominant importance with regard to North American larval anuran communities, and provide in this review a clear explanation of how to distinguish between the infective stages of these two parasites. We describe the general biology and life history of these parasites, as well as what is known about their effect on larval anurans, and the interactive effects of environmental stressors (typically anthropogenic in nature) and parasites on larval anurans. We hope that this review will convince the reader of the potential importance of these parasites to aquatic communities in general, and to amphibian communities specifically, and will also provide the information necessary for aquatic ecologists to more frequently consider the role of these parasites in their studies of aquatic ecology.  相似文献   

17.
Protozoan parasites: programmed cell death as a mechanism of parasitism   总被引:1,自引:0,他引:1  
Programmed cell death (PCD) is a potent mechanism to remove parasitized cells, but it has also been shown that protozoan parasites can induce or inhibit apoptosis in host cells. In recent years, it has become clear that unicellular parasites can also undergo PCD, meaning that they commit suicide in response to various stimuli. This review focuses on the role of protozoan PCD and on the interaction between protozoan parasites and the host cell death machinery from the perspective of parasite survival strategies.  相似文献   

18.
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite–host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free‐living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite–host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism‐induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re‐examination, display traits which are just as (if not more) likely to be found in free‐living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history.  相似文献   

19.
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.  相似文献   

20.
Schistosoma japonicum is an important parasite in terms of clinical, veterinary and socio-economic impacts, and rodents, a long neglected reservoir for the parasite, have recently been found to act as reservoir hosts in some endemic areas of China. Any difference in the host's biological characteristics and/or associated living habitats among rodents may result in different environments for parasites, possibly resulting in a specific population structure of parasites within hosts. Therefore knowledge of the genetic structure of parasites within individual rodents could improve our understanding of transmission dynamics and hence our ability to develop effective control strategies. In this study, we aimed to describe a host-specific structure for S. japonicum and its potential influencing factors. The results showed a significant genetic differentiation among hosts. Two factors, including sampling seasons and the number of miracidia genotyped per host, showed an effect on the genetic diversity of an infrapopulation through a univariable analysis but not a multivariable analysis. A possible scenario of clustered infection foci and the fact of multiple definitive host species, the latter of which is unique to S. japonicum compared with other schistosomes, were proposed to explain the observed results and practical implications for control strategies are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号