首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

2.
Questions: What is the variability in abundance of lichens on grassland soil between and within fields after prescribed fire? Is post‐fire lichen abundance an effect of pre‐fire population size? Location: Cedar Creek Natural History Area, Minnesota, USA. Methods: Lichen abundance, estimated as ground cover and dominated by Cladonia spp., was mapped in plots in two fields before prescribed burning on 06.10.2003 and 15.10.2003 for the first time since abandonment in the 1950s. The plots were resurveyed one year post‐fire. Results: Post‐fire cover of Cladonia spp. varied strongly between the fields, most likely due to different weather conditions between the burn events, which resulted in different fire intensities, one of low and one of high intensity. In the field that experienced the low intensity fire, post‐fire cover of Cladonia spp. was still relatively high, and showed a positive relationship with pre‐fire cover, while no such relationship was found after the high intensity fire. In that field Cladonia spp. experienced high mortality rates irrespective of pre‐fire cover. Conclusions: This study provides an example of how species response to disturbance can be a function of population size, but that this relationship can be non‐linear; lichens in grassland can survive a low intensity fire proportionally to pre‐fire population size, but experience high mortality rates above a fire intensity threshold. The applications of these results are that fire intensity matters to species response to prescribed fire, and that the persistence of climax lichen communities and biodiversity in the study system needs a broad range of fire intervals.  相似文献   

3.
Question: What is the impact of prescribed fires on the cover and composition of vegetation in Artemisia tridentata ssp. vaseyana steppe? Location: United States Department of Agriculture, Agricultural Research Service, United States Sheep Experiment Station, eastern Idaho (44°14′44′’ N, 112°12′47′’ W). Methods: Multiple prescribed fires were lit in 2002 and 2003 in an Artemisia tridentata ssp. vaseyana (mountain big sagebrush) steppe ecosystem that was relatively free of exotic plants. Measurements of cover components and plant species frequencies were taken pre‐ and for 2 to 3 years post‐fire. Results: Cover of forbs and grasses returned to pre‐fire levels after two years. Shrub cover declined from 36 to 6% in the first year post‐fire. Fire reduced the frequencies of three species, A. tridentata ssp. vaseyana, Festuca idahoensis, and Cordylanthus ramosus, of rangeland plants. Frequencies of four plant species, Hesperostipa comata, Polygonum douglasii, Chenopodium fremontii and Chenopodium leptophyllum increased, but only P. douglasii increased for more than a year. Conclusion: This study demonstrates that in an Artemisia tridentata ssp. vaseyana steppe ecosystem without significant non‐native species or anthropogenic disturbances vegetative cover and species composition of the herbaceous community are only minimally altered by fire. The herbaceous component returned to pre‐fire conditions within three years of a fire.  相似文献   

4.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

5.
Prescribed fire has become a common tool of natural area managers for removal of non‐indigenous invasive species and maintenance of barrens plant communities. Certain non‐native species, such as tall fescue (Festuca arundinacea), tolerate fire and may require additional removal treatments. We studied changes in soil N and C dynamics after prescribed fire and herbicide application in remnant barrens in west central Kentucky. The effects of a single spring burn post‐emergence herbicide, combined fire and herbicide treatments, and an unburned no‐herbicide control were compared on five replicate blocks. In fire‐plus‐herbicide plots, fescue averaged 8% at the end of the growing season compared with 46% fescue cover in control plots. The extent of bare soil increased from near 0 in control to 11% in burned plots and 25% in fire‐plus‐herbicide plots. Over the course of the growing season, fire had little effect on soil N pools or processes. Fire caused a decline in soil CO2 flux in parallel to decreased soil moisture. When applied alone, herbicide increased plant‐available soil N slightly but had no effect on soil respiration, moisture, or temperature. Fire‐plus‐herbicide significantly increased plant‐available soil N and net N transformation rates; soil respiration declined by 33%. Removal of non‐native plants modified the chemical, physical, and biological soil conditions that control availability of plant nutrients and influence plant species performance and community composition.  相似文献   

6.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

7.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   

8.
Question: Does increasing Festuca canopy cover reduce plant species richness and, therefore, alter plant community composition and the relationship of litter to species richness in old‐field grassland? Location: Southeastern Oklahoma, USA. Methods: Canopy cover by species, species richness, and litter mass were collected within an old‐field grassland site on 16, 40 m × 40 m plots. Our study was conducted during the first three years of a long‐term study that investigated the effects of low‐level nitrogen enrichment and small mammal herbivory manipulations. Results: Succession was altered by an increase in abundance of Festuca over the 3‐yr study period. Species richness did not decline with litter accumulation. Instead, Festuca increased most on species‐poor plots, and Festuca abundance remained low on species‐rich plots. Conclusions: Festuca may act as an invasive transformer‐species in warm‐season dominated old‐field grasslands, a phenomenon associated more with invasions of cool‐season grasses at higher latitudes in North America.  相似文献   

9.
Abstract. The effects of grazing, physical disturbance, interspecific competition, and fire on populations of individual species and on the structure and diversity of grassland communities were investigated in short-, mid-, and tall-grasslands in the Serengeti National Park, Tanzania. The treatments included deep and shallow artificial disturbances, early dry-season burning, and removal of dominant grass species from 2m2 plots located inside and outside of large-mammal-proof exclosures. Species-cover data were collected for five years and analyzed by analysis of variance and diversity indices. In all three communities, protection from grazing and physical disturbance had greater impacts on species cover and diversity than removal of dominant species or fire. More species were significantly affected (positively and negatively) by disturbance and protection from grazing (50 - 100%) than by species removals and fire (< 41%). In most cases, the cover of tall, perennial species increased following protection from grazing while the cover of annual and short, perennial species decreased. Over the five years of the study, vegetatively reproducing species benefited more than sexually reproducing species from protection from grazing, and tall rhizomatous species benefited more than tall stoloniferous species. Disturbance caused annual and short perennial species to increase and tall perennials to decrease in cover. Following species removals, tall species were either unaffected or they increased in cover while some short species increased and others decreased in cover. Species diversity in two of the three communities decreased when the communities were protected from grazing but increased when disturbed, when dominant species were removed, and when burned.  相似文献   

10.
Questions: Do current models that predict shifting effects of herbivores on plant diversity with varying nutrient conditions apply to stressful systems like salt marshes? Do herbivores affect different components of the diversity as nutrient availability varies? Location: Salt marsh–salty steppe transition zone at the SW Atlantic Mar Chiquita coastal lagoon (37°44′52″S, 57°26′6″W), Argentina. Methods: We experimentally evaluated the separate and interactive effect of nutrients and rodent (Cavia aperea) herbivory, using exclosures and applying fertilizer (mostly nitrogen), following a factorial design in 50 cm × 50 cm plots. Results: We found a negative effect of herbivory on diversity in the resource‐poor scenario (due to a reduction in species richness), but a positive effect when nutrients were added, by reducing the abundance of the dominant plant (and hence increasing evenness). Conclusions: Our experimental results contribute to the limited factorial evidence evaluating the role of nutrients and herbivory on the diversity of terrestrial plant communities, even in highly stressful environments like salt marsh–salty steppe transition zones. Our results also support the model that predicts negative effects of herbivores on plant diversity in low‐nutrient conditions and positive effects in nutrient‐enriched scenarios, and also support the mechanism assumed to act in these situations.  相似文献   

11.
Aim Using a long‐term data set we investigated the response of semi‐desert grasslands to altered disturbance regimes in conjunction with climate patterns. Specifically, we were interested in the response of a non‐native grass (Eragrostis lehmanniana), mesquite (Prosopis velutina), and native species to the reintroduction of fire and removal of livestock. Location The study site is located on the 45,360‐ha Buenos Aires National Wildlife Refuge (31°32′ N, 110°30′ W) in southern Arizona, USA. In 1985, livestock were removed and prescribed fires were reintroduced to this semi‐desert grassland dominated by non‐native grasses and encroaching mesquite trees. Methods Plant species cover was monitored along 38, 30‐m transects five times over a period of 15 years. Data were analysed using principal components analysis on the variance–covariance and correlation matrix, multivariate analysis of variance for changes over time in relation to environmental data, and analysis of variance for altered disturbance regimes. Results Reintroduction of fire and removal of livestock have not led to an increase in native species diversity or a decrease in non‐native grasses or mesquite. The cover of non‐native grass was influenced by soil type in 1993. Main conclusions Variability of plant community richness, diversity, and cover over time appear to be most closely linked to fluctuations in precipitation rather than human‐altered disturbance regimes. The effects of altered grazing and fire regimes are likely confounded by complex interactions with climatic factors in systems significantly altered from their original physiognomy.  相似文献   

12.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

13.
Question: In relation to a single fire, do repeated wildfires in Mediterranean type ecosystems (1) reduce plant species richness or diversity; (2) modify patterns of abundance or dominance of plant species or (3) alter plant composition? Location: Pinus halepensis dominated communities of Catalonia, northeastern Iberian Peninsula, western Mediterranean Basin. Methods: Regional, paired design with 14 study sites, each consisting of a once burnt area (1994) and a twice burnt area (1975–1993 and 1994). Ten years after the last fire, we recorded all vascular plant species present in nested plots and quantified their relative abundances on transects. We compared species richness, diversity, dominance and relative abundance and species‐area correlations between paired once and twice burnt areas and assessed their floristic composition similarity. Results: No statistically significant differences were found in species richness or diversity. Slopes of species‐area correlations were higher in once burnt areas. In twice burnt areas, dominance by one or two species was higher. P. halepensis showed lower relative abundance and nanophanerophytes showed higher relative abundance. No differences were found for resprouter, seeder or resprouter‐seeder species. Floristic composition similarity between paired areas tended to be higher in less productive sites. Conclusions: Fire recurrence had contrasting effects on species richness at different spatial scales. Repeated burning reduced the relative abundance of the dominant tree species, which resulted in a higher relative abundance of shrubs. It also promoted the dominance of herbs, particularly Brachypodium retusum. However, it did not change the relative abundance of regenerative groups. Paired areas were more similar as they were more Mediterranean in terms of climatic conditions.  相似文献   

14.
Abstract. A southern ridge sandhill site in central Florida, USA, was burned in 1989, 1991, and 1995 after 63 years of fire‐suppression to simulate a pre‐settlement fire regime. Fire changed species abundance and vegetation structure but caused only minimal changes in species turnover and diversity. There was a general trend for an increase in the cover of herbs following fire but this was a statistically significant effect for only one species, Liatris tenuifolia var. tenuifolia. Aristida beyrichiana increased, litter cover and litter depth were significantly reduced, and ground lichens were eliminated in response to burning. Scrub oaks and palmettos in the ground cover and small shrub layers (height ≤ 1 m) either increased or did not respond to burning, reflecting strong post‐fire resprouting. Diversity in the ground cover and small shrub layers were not affected by fire. Scrub oaks and palmettos in the large shrub and overstorey layers (height > 1 m) were reduced in density, basal area, and longest canopy measurements in response to fire. Species diversity also decreased within these layers following fire. Some Pinus elliottii var. densa survived fire, but their density was reduced. All Pinus clausa were eliminated by fire. Periodic burning can suppress the dominance of shrubs (Quercus spp.) while increasing the cover of grasses and herbs in southern ridge sandhill vegetation.  相似文献   

15.
Long-term (1977–90) experimental exclusion of three species of kangaroo rats from study plots in the Chihuahuan Desert resulted in significant increases in abundance of a tall annual grass (Aristida adscensionis) and a perennial bunch grass (Eragrostis lehmanniana). This change in the vegetative cover affected use of these plots by several other rodent species and by foraging birds. The mechanism producing this change probably involves a combination of decreased soil disturbance and reduced predation on large-sized seeds when kangaroo rats are absent. Species diversity of summer annual dicots was greater on plots where kangaroo rats were present, as predicted by keystone predator models. However, it is not clear whether this was caused directly by activities of the kangaroo rats or indirectly as a consequence of the increase in grass cover. No experimental effect on species diversity of winter annual dicots was detected. Our study site was located in a natural transition between desert scrub and grassland, where abiotic conditions and the effects of organisms may be particularly influential in determining the structure and composition of vegetation. Under these conditions kangaroo rats have a dramatic effect on plant cover and species composition.  相似文献   

16.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

17.
1. Fire ants naturally invade some undisturbed ecosystems of high conservation value and may negatively impact co‐occurring ants. 2. Over 3 years, fire ants were added and removed from a longleaf pine savanna ecosystem that naturally supports a low density of fire ants. Impacts on co‐occurring ants were monitored using pitfall traps. 3. Treatments resulted in significant differences in average fire ant abundance across all plots only in the first year of the experiment. Fire ants had little discernible impact. The abundance and species richness of co‐occurring ants in removal plots never differed from unmanipulated control plots. The abundance of co‐occurring ants was very slightly lower and ant species richness was slightly higher where Solenopsis invicta Buren colonies were added, but neither contrast was significant. 4. The poor conditions in this habitat for many native ants may explain this outcome. More broadly, the impact of fire ants on ant assemblages still appears to be secondary and largely a consequence of human impacts on the environment.  相似文献   

18.
Fire and seral vegetation succession are known to influence the distribution and abundance of a wide range of arid and semi‐arid mammal species. In Triodia hummock grasslands, the gradual increase in Triodia cover after fire is a significant factor influencing mammal distribution and abundance. However, the height of fire‐adapted hummock grass species is often ignored during habitat preference studies despite the fact that taller hummocks are likely to have improved insulation properties and greater protection from predators. We tested the relative importance of a range of Triodia habitat characteristics in determining the distribution and abundance of a fire‐adapted mammal inhabiting Triodia mallee dune fields in semi‐arid Australia. We sampled 77 sites and collected information on habitat attributes including Triodia cover, height and time since fire. The 90th percentile Triodia height (>400 mm) was the most reliable predictor of sandhill dunnart abundance, and breeding, inferred through the presence of subadults. The presence of adult sandhill dunnarts was best explained by Triodia cover, increasing when cover exceeded 25%. We suggest that while Triodia cover may be an important variable for predicting the presence of adult sandhill dunnarts, the height of Triodia is important for breeding, when tall Triodia are possibly sought for nesting sites. These Triodia height and cover requirements were not recorded at sites until at least 10 years post fire but the relationship between fire and Triodia cover and height was inconsistent; after 20 years Triodia cover declined with increasing fire age while the 90th percentile Triodia height remained relatively constant. This incongruence may explain why the presence of sandhill dunnarts appears more constrained by a minimum rather than maximum time since fire and could help explain patterns of post‐fire distribution in other arid zone mammals. Importantly, the 90th percentile Triodia height highlighted the possible significance of scattered, tall Triodia hummocks for arid zone fossorial mammals.  相似文献   

19.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

20.
Abstract. Extensive areas in the mountain grasslands of central Argentina are heavily invaded by alien species from Europe. A decrease in biodiversity and a loss of palatable species is also observed. The invasibility of the tall‐grass mountain grassland community was investigated in an experiment of factorial design. Six alien species which are widely distributed in the region were sown in plots where soil disturbance, above‐ground biomass removal by cutting and burning were used as treatments. Alien species did not establish in undisturbed plots. All three types of disturbances increased the number and cover of alien species; the effects of soil disturbance and biomass removal was cumulative. Cirsium vulgare and Oenothera erythrosepala were the most efficient alien colonizers. In conditions where disturbances did not continue the cover of aliens started to decrease in the second year, by the end of the third season, only a few adults were established. Consequently, disturbances are needed to maintain alien populations in tall‐grass mountain grasslands. Burning also increased the species richness of native species. We conclude that an efficient way to control the distribution of alien species is to decrease grazing pressure while burning as a traditional management tool may be continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号