首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Johnson CN  Vernes K  Payne A 《Oecologia》2005,143(1):70-76
We compared demography of populations along gradients of population density in two medium-sized herbivorous marsupials, the common brushtail possum Trichosurus vulpecula and the rufous bettong Aepyprymnus rufescens, to test for net dispersal from high density populations (acting as sources) to low density populations (sinks). In both species, population density was positively related to soil fertility, and variation in soil fertility produced large differences in population density of contiguous populations. We predicted that if source–sink dynamics were operating over this density gradient, we should find higher immigration rates in low-density populations, and positive relationships of measures of individual fitness—body condition, reproductive output, juvenile growth rates and survivorship—to population density. This was predicted because under source–sink dynamics, immigration from high-density sites would hold population density above carrying capacity in low-density sites. The study included 13 populations of these two species, representing a more than 50-fold range of density for each species, but we found that individual fitness, immigration rates and population turnover were similar in all populations. We conclude that net dispersal from high to low density populations had little influence on population dynamics in these species; rather, all populations appeared to be independently regulated at carrying capacity, with a balanced exchange of dispersers among populations. These two species have suffered recent reductions in range, and they are ecologically similar to other species that have declined to extinction in inland Australia. It has been argued that part of the cause of the vulnerability of species like these is that they exhibit source–sink dynamics, and disturbance to source habitats can therefore cause large-scale population collapses. The results of our study argue against this interpretation.  相似文献   

2.
Dispersal in most group‐living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex‐specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex‐specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium‐ to long‐distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long‐distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.  相似文献   

3.
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small‐scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self‐recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.  相似文献   

4.
Spatiotemporal variation in mating patterns is poorly known in wind‐pollinated plant species. Here, we analysed mating patterns of the wind‐pollinated dioecious shrub Pistacia lentiscus by genotyping 904 seeds from 30 mother plants with eight microsatellite markers in a high‐density population in two consecutive flowering seasons. We found significant differences in some mating system estimates between years, particularly in the levels of correlated paternity. Overall, within‐mothers correlated paternity was higher in 2007 than in 2006 (rpWM = 0.085 and 0.030), which translated into an effective number of fathers (Nep) of 11.8 and 33.6 respectively. Using a smoothing interpolation technique, we show that the effective pollen cloud was spatially structured in patches of high‐ and low‐genetic diversity, which do not remain constant from year to year. In 2006, the among‐mothers correlated paternity (rpAM) showed no trend with distance, suggesting no restriction of pollen dispersal. However, in 2007, rpAM was greater than zero at short distances, revealing the existence of small‐scale patterns of pollen dispersal. The fact that the studied seasons were climatically homogeneous during the flowering time suggested that the observed differences might be ascribed to between‐year phenological variation of individuals in the studied population or other (unknown) factors. Numerical simulations, based on the real data set, indicated that the clumping of males and decreasing plant density, which is related to different types of pollen limitation, greatly increase correlated mating in this wind‐pollinated species, which is of relevance under the frame of the continuous anthropogenic habitat disturbance suffered by Mediterranean ecosystems.  相似文献   

5.
Pollen movements and mating patterns are key features that influence population genetic structure. When gene flow is low, small populations are prone to increased genetic drift and inbreeding, but naturally disjunct species may have features that reduce inbreeding and contribute to their persistence despite genetic isolation. Using microsatellite loci, we investigated outcrossing levels, family mating parameters, pollen dispersal, and spatial genetic structure in three populations of Hakea oldfieldii, a fire‐sensitive shrub with naturally disjunct, isolated populations prone to reduction in size and extinction following fires. We mapped and genotyped a sample of 102 plants from a large population, and all plants from two smaller populations (28 and 20 individuals), and genotyped 158–210 progeny from each population. We found high outcrossing despite the possibility of geitonogamous pollination, small amounts of biparental inbreeding, a limited number of successful pollen parents within populations, and significant correlated paternity. The number of pollen parents for each seed parent was moderate. There was low but significant spatial genetic structure up to 10 m around plants, but the majority of successful pollen came from outside this area including substantial proportions from distant plants within populations. Seed production varied among seven populations investigated but was not correlated with census population size. We suggest there may be a mechanism to prevent self‐pollination in H. oldfieldii and that high outcrossing and pollen dispersal within populations would promote genetic diversity among the relatively small amount of seed stored in the canopy. These features of the mating system would contribute to the persistence of genetically isolated populations prone to fluctuations in size.  相似文献   

6.
  • Variation in flowering phenology is common in natural populations, and is expected to be, together with inter‐mate distance, an important driver of effective pollen dispersal. In populations composed of plants with temporally separated sexual phases (i.e. dichogamous or heterodichogamous populations), pollen‐mediated gene flow is assumed to reflect phenological overlap between complementary sexual phases. In this study, we conducted paternity analyses to test this hypothesis in the temporally dimorphic tree Acer opalus.
  • We performed spatially explicit analyses based on categorical and fractional paternity assignment, and included tree size, pair‐wise genetic relatedness and morph type as additional predictors. Because differences between morphs in flowering phenology may also influence pollination distances, we modelled separate pollen dispersal kernels for the two morphs.
  • Extended phenological overlap between male and female phases (mainly associated with inter‐morph crosses) resulted in higher siring success after accounting for the effects of genetic relatedness, morph type and tree size, while reduced phenological overlap (mainly associated with intra‐morph crosses) resulted in longer pollination distances achieved. Siring success also increased in larger trees.
  • Mating patterns could not be predicted by phenology alone. However, as heterogeneity in flowering phenology was the single morph‐specific predictor of siring success, it is expected to be key in maintaining the temporal dimorphism in A. opalus, by promoting not only a prevalent pattern of inter‐morph mating, but also long‐distance pollination resulting from intra‐morph mating events.
  相似文献   

7.
Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous‐collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence.  相似文献   

8.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

9.
The number of sires fertilizing a given dam is a key parameter of the mating system in species with spatially restricted offspring dispersal, since genetic relatedness among maternal sibs determines the intensity of sib competition. In flowering plants, the extent of multiple paternity is determined by factors such as floral biology, properties of the pollen vector, selfing rate, spatial organization of the population, and genetic compatibility between neighbours. To assess the extent of multiple paternity and identify ecological factors involved, we performed a detailed study of mating patterns in a small population of a self-incompatible clonal herb, Arabidopsis halleri . We mapped and genotyped 364 individuals and 256 of their offspring at 12 microsatellite loci and jointly analysed the level of multiple paternity, pollen and seed dispersal, and spatial genetic structure. We found very low levels of correlated paternity among sibs ( P full-sib = 3.8%) indicating high multiple paternity. Our estimate of the outcrossing rate was 98.7%, suggesting functional self-incompatibility. The pollen dispersal distribution was significantly restricted (mean effective pollen dispersal distance: 4.42 m) but long-distance successful pollination occurred and immigrating pollen was at most 10% of all pollination events. Patterns of genetic structure indicated little extent of clonal reproduction, and a low but significant spatial genetic structure typical for a self-incompatible species. Overall, in spite of restricted pollen dispersal, the multiple paternity in this self-incompatible species was very high, a result that we interpret as a consequence of high plant density and high pollinator service in this population.  相似文献   

10.
Habitat fragmentation might significantly affect mating and pollen dispersal patterns in plant populations, contributing to the decline of remnant populations. However, wind-pollinated species are able to disperse pollen at longer distances after opening of the canopy. Our objectives were to characterize the mating system parameters and to estimate the average distance of effective pollen dispersal in the wind-pollinated conifer Austrocedrus chilensis. We sampled 19 “mother trees,” 200 progeny, and 81 additional adults (both male and female), in a fragmented population at the Argentinean Patagonian steppe. We registered the spatial positions of individuals and genotyped all samples with five microsatellite markers. We found a high genetic diversity, a moderated rate of biparental inbreeding (t m? ??t s?=?0.105), and a complete absence of correlated paternity (r p?=??0.015). The effective number of pollen donors contributing to a single mother (N ep) was 13.9. Applying TWOGENER, we estimated a low but significant differentiation among the inferred pollen pools (ΦFT?=?0.036, p?=?0.001) and a very large average pollen dispersal distance (d?=?1,032.3 m). The leptokurtic distribution (b?=?0.18) presumes a potential for even larger dispersal distances. The high genetic diversity, the mating patterns, and the extensive pollen dispersal presume that habitat fragmentation did not have a negative impact on pollen movement in this population of A. chilensis. Genetic connectivity among fragmented populations scattered in the Patagonian region is possible, and we stress the need of management policies at the landscape level.  相似文献   

11.
Frugivores exhibit considerable variation in the seed dispersal services they provide. Understanding what drives these differences is a key goal for ecologists because of the central role seed dispersal plays in shaping ecological and genetic diversity in plant populations. The lek‐mating system of the Long‐wattled Umbrellabird (Cephalopterus penduliger) provides a powerful lens to examine how mating behavior may impact seed dispersal outcomes. As in all lek‐breeding species, male Umbrellabirds congregate in traditional sites (leks) to display, whereas females are solitary and visit leks only rarely. This study demonstrates how differences in mating behavior between the sexes drive distinctive seed movement and deposition patterns by male vs. female Umbrellabirds. Using radio tracking and gut retention trials, we documented divergent movement patterns between the sexes that are directly attributable to mating behavior differences. These movement differences led males to disperse seeds long distances from source trees and to deposit the majority of seeds they ingested within the lek; females dispersed seeds shorter distances and more evenly across the landscape. We empirically confirmed that the density of dispersed seeds was higher in leks than in control areas outside the lek, yet found no evidence that this higher density of seeds in leks reduced probability of seedling establishment. This research not only provides a mechanistic explanation for long dispersal distances and high levels of genetic diversity previously reported for seeds in Umbrellabird leks, but also highlights the importance of explicitly considering behavior in studies of animal‐mediated seed dispersal.  相似文献   

12.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

13.
Patterns of mating and dispersal are key factors affecting the dynamics, viability and evolution of plant populations. Changes in mating system parameters can provide evidence of anthropogenic impacts on populations of rare plants. Tetratheca paynterae subsp. paynterae is a critically endangered perennial shrub confined to a single ironstone range in Western Australia. Mining of the range removed 25% of plants in 2004 and further plants may be removed if the viability of the remaining populations is not compromised. To provide baseline genetic data for monitoring mining impacts, we characterised the mating system and pollen dispersal over two seasons in T. paynterae subsp. paynterae and compared mating system parameters with two other ironstone endemics, T. paynterae subsp. cremnobata and T. aphylla subsp. aphylla that were not impacted by mining. T. paynterae subsp. paynterae was the only taxon showing evidence of inbreeding (t m = 0.89), although hand pollination revealed pre-zygotic self-incompatibility limits the production of seed from self-pollen. In a year of lower fruit set (2005), the estimate of correlated paternity increased from 20 to 35%. Direct estimates of realised pollen dispersal, made by paternity assignment in two small populations where all adult plants were genotyped, revealed a leptokurtic distribution with 30% of pollen dispersed less than 3 m and 90% less than 15 m. Restricted pollen dispersal maintains the strong genetic structuring of the adult populations in succeeding generations. As a consequence of preferential outcrossing, any reduction in effective population size, flowering plant density and/or the abundance and activity of pollinators may impact negatively on population viability through reduced seed set, increased inbreeding and increased correlated paternity.  相似文献   

14.
Mating systems are thought to be an important determinant of dispersal strategies in most animals, including the great apes. As the most basal taxon of all great apes, orang-utans can provide information about the evolution of mating systems and their consequences for population structure in this Family. To assess the sex-specific population structure in orang-utans, we used a combination of paternally transmitted Y-chromosomal genetic markers and maternally transmitted mitochondrial DNA sequences. Markers transmitted through the more philopatric sex are expected to show stronger differentiation among populations than the ones transmitted through the dispersing sex. We studied these patterns using 70 genetic samples from wild orang-utans from seven Bornean and two Sumatran populations. We found pronounced population structure in haplotype networks of mitochondrial sequence data, but much less so for male-specific markers. Similarly, mitochondrial genetic differentiation was twice as high among populations compared to Y-chromosomal variation. We also found that genetic distance increased faster with geographic distance for mitochondrial than for Y-linked markers, leading to estimates of male dispersal distances that are several-fold higher than those of females. These findings provide evidence for strong male-biased dispersal in orang-utans. The transition to predominantly female-biased dispersal in the great ape lineage appears to be correlated with life in multimale groups and may reflect the associated fitness benefits of reliable male coalitions with relatives or known partners, a feature that is absent in orang-utans.  相似文献   

15.
16.
Identifying landscape elements that influence gene flow and migration in wild species is the current main topic of landscape genetics. Most landscape genetic studies infer gene flow and migration from genetic distances among populations or individuals and statistically relate these measurements to landscape composition and configuration. This approach assumes symmetrical gene flow between pairs of populations. Such an assumption, however, will often be violated, especially in source–sink systems. Source populations provide more emigrants than they receive immigrants, and sink populations get many immigrants, but release few emigrants. Source–sink dynamics cannot be explored using common landscape genetic approaches relying on genetic distances. In this issue of Molecular Ecology, Andreasen et al. ( 2012 ) apply an alternative approach allowing them to infer asymmetrical migration. They use a Bayesian assignment test among objectively defined populations of mountain lions (Puma concolor) in western USA to estimate recent and directional migration rates. The study shows that an area with a high amount of wildlife refuges and low hunting pressure harbours a source population for mountain lion dispersal, while areas with high hunting pressures form sink populations; a result helpful in making informed decisions in conservation management.  相似文献   

17.
1. River systems offer special environments for the dispersal of aquatic plants because of the unidirectional (downstream) flow and linear arrangement of suitable habitats.
2. To examine the effect of this flow on microevolutionary processes in the unbranched bur-reed ( Sparganium emersum ) we studied the genetic variation within and among nine (sub)populations along a 103 km stretch of the Niers River (Germany–The Netherlands), using amplified fragment length polymorphisms.
3. Genetic diversity in S. emersum populations increased significantly downstream, suggesting an effect of flow on the pattern of intrapopulation genetic diversity.
4. Gene flow in the Niers River is asymmetrically bidirectional, with gene flow being approximately 3.5 times higher in a downstream direction. The observed asymmetry is probably caused by frequent hydrochoric dispersal towards downstream locations on the one hand, and sporadic zoochoric dispersal in an upstream direction on the other. The spread of vegetative propagules (leaf and stem fragments) is probably not an important mode of dispersal for S. emersum , suggesting that gene flow is mainly via seed dispersal. Realized dispersal distances exceeded 60 km, revealing a potential for long-distance dispersal in S. emersum .
5. There was no correlation between geographical and genetic distances among the nine S. emersum populations (i.e. no isolation by distance), which may be due to the occurrence of long-distance dispersal and/or colonization and extinction dynamics in the Niers River.
6. Overall, the genetic population structure and regional dispersal patterns of S. emersum in the Niers River are best explained by a linear metapopulation model. Our study shows that flow can exert a strong influence on population genetic processes of plants inhabiting stream systems.  相似文献   

18.
We evaluated the effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Parentage analysis using 10 microsatellite markers indicated that the 111 adult trees located within a 11.56 ha plot in the Tatera Forest Reserve, Japan, included only one parent of 44.2% and both parents of 40.7% of the 226 saplings located in a 1-ha core plot at its center. Coancestry (F(ij)) estimates indicated that there was strong genetic structure among the saplings. The numbers of pairs of full- and half-siblings were high among neighboring saplings, suggesting that there was strong maternal half-sibling family structure among the saplings around their seed parents, probably generated by the spatially limited seed dispersal and the small extent of overlapping seed shadows owing to the low density of adults. The frequencies also suggest that the maternal half-sibling families are interspersed with full-siblings, produced by correlated mating, probably because pollination frequency depends on the distance between parents. The frequencies of pairs of half-siblings decreased as the distance between saplings increased, but did not fall to zero even at distances up to the 90-95 m class, suggesting that paternal half-siblings originating from correlated paternity were widely distributed owing to extensive pollen flow. We separately examined the genetic structure for maternal and paternal alleles in the saplings. Unsurprisingly, very strong genetic structure was detected for maternal alleles. However, weak (but significant) genetic structure was also detected for paternal alleles. Therefore, pollen dispersal may affect the extent of genetic structure as well as seed dispersal.  相似文献   

19.
Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male‐biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male‐biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species.  相似文献   

20.
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5–90.1; Hj = 0.23–0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long‐winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号