首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: How do habitat edges and trampling affect mesic (Myrtillus type) understorey vegetation in fragmented urban forests, and what are the relative strengths and spatial extent of these effects? Location: The city of Helsinki, southern Finland. Methods: Vegetation sample plots were placed at different distances from the forest edge. At each distance we selected plots on, next to and away from paths of different levels of wear, and the covers and frequencies of plant species were sampled. We used generalized linear mixed models and ordination techniques to test our hypotheses. Results: The effect of the edge penetrated up to 50 m into the forest interior. Only light effects of trampling were found in seemingly untrampled areas, in addition to the direct effects of trampling on the paths. Both trampling and edge effects changed the forest understorey species composition. Trampling changed plant species composition locally on paths, and provided opportunities for new species to establish in previously unbroken forest vegetation. Urban forest edges were characterised by species better adapted to sunny, warm and dry conditions. These species, such as grasses, replaced more sensitive forest species, such as dwarf shrubs and mosses. We observed a large number of light demanding deciduous trees at the edges, which may be one of the factors increasing soil fertility and consequently promoting the high abundance of fast growing species, such as grasses and herbs related to more fertile site types. Conclusions: We recommend that urban forest fragments left within urban development should be at least 2–3 ha in size and that the shape of the patch and the number of potential recreational users should be taken into account when preserving true forest understorey vegetation from the effects of edges and trampling.  相似文献   

2.
Forest paths are characterised by a zonation in vegetation composition as a result of gradients in abiotical conditions and continued recreational impact. Little is known about how much seed bank composition is affected by recreation and the existing path structure. As it is difficult to assess the contribution of seed banks to vegetation restoration, this study imparts relevant knowledge to restore vegetation on paths which are closed for recreational use. We surveyed seed bank and field layer vegetation composition in transects across path ecotones in deciduous forest. Analysis concentrated on seed bank characteristics and similarities of the seed bank and field layer vegetation in terms of ecological and seed size groups. A total of 74 species and 9,815 seedlings germinated out of the seed bank samples. The total seed density does not differ between path zones, but significant differences exist in the depth distribution and composition of the seed bank throughout transects. There is a large discrepancy between the composition of the seed bank and the vegetation. Small seeded species of disturbed environments dominate in each path zone. Typical forest species dominate in the vegetation while their contribution to the seed bank is low. Only with reference to the proportion of species of forest edges and clearings, the seed bank and vegetation do not differ significantly. Similarity between the seed bank on the path centre and the vegetation in the respective path zones decreases towards the undisturbed forest vegetation. Some competitive species like Urtica dioica and Lythrum salicaria are excessively represented in the seed bank and efficiently may obstruct further visitor use. However, these early successional species may not contribute to the conservation values of forests. Therefore management should carefully consider alternative amendments (e.g. soil scarification and seeding) to stimulate vegetation restoration.  相似文献   

3.
The effects of disturbance by recreational activities (trampling) on changes in soil organic matter (SOM) and on mycorrhizal roots of seedlings and mature trees were studied in four stands of a beech (Fagus sylvatica L.) forest near Basel, Switzerland. At each site, comparable disturbed and undisturbed plots were selected. Disturbance reduced ground cover vegetation and leaf litter. Beech seedlings had lower biomass after disturbance. Ergosterol concentration in seedling roots, an indicator of mycorrhizal fungi, was lower in two of the four disturbed plots compared to undisturbed plots; these two disturbed sites had especially low litter levels. Based on ergosterol measurements, mycorrhizas of mature trees did not appear to be negatively affected by trampling. Total fine roots and SOM were higher in the disturbed than in the undisturbed plots at three sites. At the fourth site, fine roots and SOM in the disturbed areas were lower than in the undisturbed areas most probably due to nutrient input following picnic activities. Principal component analysis revealed a close correlation between SOM and fine roots of mature trees as well as litter and seedling biomass. Trampling due to recreational activities caused considerable damage to the vegetation layer and in particular to the beech seedlings and their mycorrhizal fine roots, whereas, roots of mature trees were apparently resilient to trampling.  相似文献   

4.
Questions: How does invasion affect old‐field seed bank species richness, composition and density? How consistent are these effects across sites? Does the soil seed bank match vegetation structure in old‐fields? Location: Menorca, Balearic Islands, Spain, western Mediterranean basin. Methods: We monitored seed germination in soils from old‐fields that were both uninvaded and invaded (legacy effect) by the annual geophyte Oxalis pes‐caprae. We also added O. pes‐caprae bulbs to uninvaded soils to test O. pes‐caprae interference with seedling emergence (competitive effect). We compared species composition in the seed bank with that of the vegetation. Results: Species richness in the seed bank and in the vegetation was not significantly different between invaded and uninvaded areas. Uninvaded areas did not have larger seed banks than invaded areas. More seedlings, especially of geophytes, emerged when O. pes‐caprae bulbs were added to the soil. Species similarity between invaded and uninvaded areas was higher in the seed bank (74%) than in the vegetation (49%). Differences in species composition were as important as differences among sites. The degree of species similarity between the seed bank and the vegetation was very low (17%). Conclusions: Despite invasion by O. pes‐caprae not affecting species richness, the variation in the seed bank species composition in invaded and uninvaded areas, and the differences between the seed bank and the mature vegetation, highlights that even if the invader could be eradicated the vegetation could not be restored back to the exact composition as found in uninvaded areas.  相似文献   

5.
We assessed the size of seed bank, species diversity and similarity between seed bank and standing vegetation in four oriental beech (Fagus orientalis Lipsky) community types of the central Hyrcanian forests of northern Iran. For this purpose a total of 52 relevés was established in two associations and two subassociations of the beech forests, and six soil samples (20 × 20 cm square and to a depth of 10 cm) were collected in each relevé in mid-spring, after the germination season had ended. Soil seed bank was investigated using the seedling emergence method. A total of 63 species, 57 genera and 36 families was represented in the persistent soil seed bank of the forest communities. The seed bank contained 28 species not found as adult plants in the vegetation, but these were mostly early successional species. Size of the seed bank ranged from 3740 to 4676 individuals m−2 in the Rusco hyrcani-Fagetum orientalis and Danae racemosae-Fagetum orientalis associations, respectively. Species composition of seed banks and aboveground vegetation had low similarity with an average of 24.3% in the four plant communities, because only 38% of the species were the same in the vegetation and the seed banks. Most seeds in the seed bank were from early successional species, and the only tree with a large persistent seed bank was the fast-growing pioneer Alnus subcordata. DCA ordination also demonstrated low similarity between soil seed bank and vegetation. The soil seed banks of the four beech communities did not differ significantly in size, composition, diversity and uniformity. Although above ground vegetation in the four community types is floristically distinct, there is considerable overlap among the soil seed banks because they contain in a similar way early successional species. Further, the absence of typical forest species in the soil seed bank indicates that restoration of forest tree species cannot rely on the soil seed bank.  相似文献   

6.
We investigate the persistent soil seed bank composition and its relation to the above-ground flora of grazed and non-grazed sub-Mediterranean deciduous oak forests of NW Greece. Twenty-eight taxa were recorded in the soil seed bank and 83 taxa (70 taxa in plots of seed bank sampling) in the above-ground vegetation. The dominant tree species and many woodland species found in the above-ground vegetation were absent from the soil seed bank. Similarity between the soil seed bank and the above-ground vegetation decreased with grazing, and grazing led to a decrease of species richness in above-ground vegetation and soil seed bank. Beta diversity of vegetation among grazed and among non-grazed plots did not differ, but was significantly higher between grazed and non-grazed areas. Beta diversity of the soil seed bank declined with grazing. When applying classification tree and logistic regression analyses, non-grazed forest sites are clearly differentiated by the presence of Phillyrea latifolia, Euphorbia amygdaloides and Brachypodium sylvaticum. PCA ordination of above-ground species composition reflected a gradient from sites grazed by ruminants to non-grazed sites, but no clear structure was detected in the seed bank.  相似文献   

7.
Abstract. This is the first quantitative study of seed bank characteristics in North American alvar habitats. We assessed seed bank density, species richness, and species composition in 75 plots distributed among five alvar sites in Bruce Peninsula National Park, Ontario, Canada, each of which displayed areas of high and low vegetation cover within the alvar and a fully forested perimeter area. Forested habitats immediately adjacent to alvar patches contained minimal seed banks for species restricted to the alvar patches. Open alvars contained less than 1% seeds from woody forest species. This suggests that forest is not invading adjacent alvar habitat via seeds and that adjacent forest does not contain a reservoir of alvar seeds. When compared to areas on the alvar with high vascular plant cover, areas with low cover contained a slightly smaller viable seed bank, but seed banks from high and low vegetation cover plots had similar species composition and species richness. High vegetation cover plots had slightly higher mean and maximum soil depths compared with low cover plots, but no differences in other physical and chemical parameters. Thus, spatial heterogeneity in plant cover is associated only weakly with heterogeneity in below‐ground factors. Despite the availability of seed and soil resources, vegetation dynamics are constrained in areas with low plant cover, and thus alvar community development seems to respond non‐linearly to resource availability.  相似文献   

8.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   

9.
Abstract. Soil seed bank and floristic diversity were studied in a forest of Quercus suber, a forest of Quercus canariensis and a grassland, forming a vegetation mosaic in Los Alcornocales Natural Park, southern Spain. The soil seed bank was estimated by the germination technique. In each community patch, diversity, woody species cover and herbaceous species frequency was measured. Three biodiversity components – species richness, endemism and taxonomic singularity – were considered in the vegetation and the seed bank. Forest patches had a soil seed bank of ca. 11 200–14 100 seed.m?2 and their composition had low resemblance to (epigeal) vegetation. The grassland patch had a more dense seed bank (ca. 31 800 seed.m?2) and a higher index of similarity with vegetation, compared with the forests nearby. The complete forest diversity was 71–78 species on 0.1 ha, including 12–15 species found only in the seed bank; the grassland species richness was higher (113 species on 0.1 ha). We discuss the role of soil seed banks in the vegetation dynamics and in the complete plant biodiversity of the mosaic landscape studied.  相似文献   

10.
西双版纳热带森林土壤种子库与地上植被的关系   总被引:39,自引:3,他引:36  
通过实验研究探讨了西双版纳几类热带森林的土壤种子库与地上植被的关系.结果表明,在森林演替的初期,土壤种子库与地上植被共有的种类和种子储量较多,随着林龄的增大,外来种子的比例逐渐增加,到季节雨林阶段,土壤种子库中的种子大部分为来自群落外的先锋种类.这些种子在郁闭的林冠下很难萌发,一旦森林受到干扰出现林窗或空旷地,这些潜在的种源将迅速萌发,参与植被的恢复或演替  相似文献   

11.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

12.
Soil seed banks are the ecological memory of plant communities and might represent their regeneration potential. This study examines the soil seed bank in hardwood floodplain forests of the biosphere reserve “Valle del Ticino” (Northern Italy) to find out whether the natural forest vegetation can potentially be restored by the soil seed bank. We compared near natural forests of the phytosociological association Polygonato multiflori–Quercetum roboris with stands dominated by the nonnative tree species Robinia pseudoacacia and Prunus serotina in order to investigate whether the composition of the soil seed bank is significantly influenced by the composition of the main canopy tree species and soil properties. Soil seed bank samples were taken from 20 randomly selected plots in stands that were differentiated into four groups related to the dominant forest canopy species. The germinated plants were counted and their species determined. A total of 2,427 plants belonging to 84 species were recorded. The composition of the dominant tree species and soil parameters significantly influence the composition of the seed bank. The similarity with the standing vegetation was very low. Only 13% of the species in the soil seed bank represent the target vegetation. The low percentage of target species and the high percentage of nonnative species imply that the regeneration of near‐natural forest vegetation from the soil seed bank is not feasible. Consequently, disturbances that may activate the soil seed bank should be minimized. Thus, we recommend stopping the mechanical removal of the nonnative tree species in the Ticino Park .  相似文献   

13.
Questions: How does disturbance and successional age influence richness, size and composition of the soil seed bank? What is the potential contribution of the soil seed bank to the plant community composition on sites differing in their successional age or disturbance intensity? Location: Experimental Botanical Garden of Göttingen University, central Germany. Methods: Above‐ground vegetation and soil seed bank were studied on formerly arable fields in a 36‐year‐old permanent plot study with five disturbance intensities, ranging from yearly ploughing via mowing to long‐term uninterrupted succession. We compared species compositions, seed densities and functional features of the seed bank and above‐ground vegetation by using several methods in parallel. Results: The seed bank was mainly composed of early successional species typical of strongly disturbed habitats. The difference between seed bank composition and above‐ground vegetation decreased with increasing disturbance intensity. The species of greatest quantitative importance in the seed bank was the non‐native forb Solidago canadensis. Conclusions: The ability of a plant community to regenerate from the soil seed bank dramatically decreases with increasing time since abandonment (successional age) and with decreasing disturbance intensity. The present study underlines that plant species typical of grasslands and woodlands are limited by dispersal capacity, owing to low capacity for accumulation of seeds in the soil and the fact that most species do not build up persistent seed banks. Rare and target species were almost absent from the seed bank and will, after local elimination, depend on reintroduction for continuation of their presence.  相似文献   

14.
In the present work we examined the composition and distribution across three soil layers of the buried soil seed bank under three different overstory types (Fagus sylvatica, Quercus robur, Pinus sylvestris) and in logging areas in a 4383-ha forest in central Belgium. The objectives were: (1) to investigate whether species composition and species richness of soil seed banks are affected by different forest stands; (2) to examine how abundant are habitat-specific forest species in seed banks under different planted tree layers. The study was carried out in stands which are replicated, managed in the same way (even-aged high forest), and growing on the same soil type with the same land-use history. In the investigated area, the seed bank did show significant differences under oak, beech, pine and in logging areas, respectively in terms of size, composition and depth occurrence. All species and layers taken together, the seed bank size ranked as follows: oakwood > beechwood > logging area > pinewood. The same pattern was found for forest species. Seed numbers of Betula pendula, Calluna vulgaris, Dryopteris dilatata and Rubus fruticosus were significantly higher under the beech canopy. Carex remota, Impatiens parviflora and Lotus sp. showed a significantly denser seed bank in logging areas, while Digitalis purpurea seeds were significantly more abundant in soils under the oak canopy. The fact that the seed bank of an originally homogeneous forest varies under different planted stands highlights that a long period of canopy conversion can affect the composition and depth of buried seeds.  相似文献   

15.

Background and Aims

Information on soil seed bank processes is crucial for understanding vegetation dynamics. Despite the documented importance of soil seed banks in many ecosystems, their role is not fully understood in some sensitive habitats, such as the alpine meadows of the Tibetan Plateau.

Methods

We studied the seasonal dynamics of the germinable soil seed bank under four disturbance intensities in an alpine meadow on the Tibetan Plateau as well as seed size distribution relative to disturbance intensity. Composition of the seed bank was compared with that of the standing vegetation.

Results

Density of buried seeds increased with disturbance intensity, but species richness and species diversity decreased. Seed density and species richness of the seed bank varied seasonally in all layers (0–2, 2–7, 7–12 cm) and the whole (0–12 cm). The species composition of seed bank was not significantly influenced by season. There was no trend in seed size distribution as disturbance increased. Seasonal seed bank turnover rates increased with increase in disturbance. The result of the NMDS showed that species composition of seed bank and vegetation exhibited a fairly uniform pattern in each season.

Conclusions

Although as a whole the species composition of the vegetation and seed bank showed a relatively low degree of similarity in each season, similarity was highest in the most disturbed habitat. There was no alteration in species composition of seed bank regardless of disturbance intensity, but seed density decreased as disturbance increased. Disturbances in alpine plant communities might increase persistence of regeneration niches. Regeneration from the seed bank together with vegetative reproduction contributed to aboveground vegetation in highly disturbed habitats. Clonal species played an important role in regeneration of vegetation in slightly disturbed areas, where there was little contribution of ruderals from soil seed banks.  相似文献   

16.
Question: Are the seed banks of an isolated subtropical oceanic island capable of naturally regenerating vegetation either with species of the historical forest community or with the existing grassland community after severe damage to the vegetation by goats? Location: Nakoudojima Island, Bonin Archipelago (Ogasawara Shoto), Japan. Methods: Soil samples were collected at 0–5 cm and 5–10 cm depths from seven plots in forests, grasslands, artificially matted areas and bare land. Soil seed banks were assessed using the seedling emergence method followed by the hand‐sorting of ungerminated seeds. We determined the size and composition of the seed banks in upper soil layers of plots and compared the seed banks to the standing vegetation. Results: A total of 12 220 seedlings belonging to 42 species from 20 families germinated. Total mean seed density (0–5 cm depth) was low in all plots within forest, grassland, and heavily degraded vegetation types (34.7 ± 8.6 to 693.5 ± 123.6, 58.6 ± 7.8 to 107.1 ± 10.0, and 1.1 ± 0.5 to 7.2 ± 2.3 seeds/m2, respectively). Forbs and graminoids dominated the seed banks of grassland and forest plots including Cyperus brevifolius, Gnaphalium pensylvanicum, Oxalis corniculata and Solanum nigrum, and these alien species comprised 90% of the density of the seed bank. There was little correlation between seed banks and standing vegetation of the island (Sørensen similarity coefficient values 0.26 to 0.45). Conclusions: If natural regeneration occurs from the seed bank of the island, future vegetation will not move toward the original forest community, because the seed bank is dominated by non‐native herbaceous grassland species. Though isolated, a few forest remnants with low species richness could be an important source for the natural re‐establishment of forest on the island; however, seed availability may be limited by either poor dispersal or pollination so that woody species will probably recover very slowly on this goat‐impacted island.  相似文献   

17.
Miaojun Ma  Xianhui Zhou  Guozhen Du 《Flora》2010,205(2):128-134
We examined the role of the soil seed bank along a grazing disturbance gradient and its relationship with the vegetation of alpine meadows on the Tibet plateau, and discussed the implications for restoration. The seed bank had a high potential for restoration of species-rich vegetation; 62 species were identified in the vegetation and 87 in the seed bank, 39 species being common to both. Mean seed density was 3069–6105 viable seeds m−2. The density of buried seeds increased significantly with increasing disturbance, indicating that restoration of disturbed areas is not seed limited. Seed density and species richness decreased with depth. The proportion of perennial species decreased with decrease in disturbance both in seed bank and in vegetation. A large portion of species with persistent seeds in the disturbed areas indicate that this seed type can be regarded a strategy of adaptation to current disturbances. Detrended correspondence analysis (DCA) showed significant differences of species composition between seed bank and vegetation, except for the seriously disturbed site. Our results suggest that the establishment of new species in severely disturbed areas is more dependent on the seed bank. By contrast, the restoration in less-disturbed and mature meadows does not rely on seed banks, and the establishment of the vegetation in these communities is more likely to rely on seed dispersal from the standing vegetation and on species with vegetative reproduction.  相似文献   

18.
Abstract. The dynamics of the seed bank may provide clues to the process of recovery of the vegetation of disturbed sites. The role of the seed bank may be more important in areas with a seasonal climate than in areas where seedling recruitment is not limited to one season. We studied the seed bank and the seed rain in three sites of the Chilean mediterranean-climate region (33° 48'S) which differed in the degree of anthropic disturbance: a closed-canopy, second-growth forest; an open matorral; and an old-field. Additionally, we tested the germination of seeds from the soil and from the current-year seed crop. The seed bank varied considerably between the two years of study, although no change in the vegetation could be observed. Seed density and species richness were lower in 1989 than in 1988. The seed bank of the second-growth forest changed less between years, while the old-field showed the largest change. The highest seed rain occurred under shrub patches in the open matorral, while few seeds fell in the spaces between shrub clumps or in the old-field. In the forest, seed rain was low and correlated with species cover. Germination was low (0 - 15%) in tests using either soil samples or fresh seeds. These results indicate that matorral succession is a very slow process, limited mainly by low germination and low arrival of propagules to open areas. Most woody species have animal-disseminated fleshy propagules. The presence of established shrubs which may serve as perches or refuges for animals increases species richness in the seed rain and the seed bank.  相似文献   

19.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

20.
Extensively managed semi-natural grasslands represent species-rich habitats and therefore play a key role for the maintenance of biodiversity in agricultural areas. In marginal and poorly accessible areas, the traditional management of grassland is frequently abandoned, which leads to the spread of forest. In Southern Switzerland, terraced vineyards (a special grassland type) and terraced grasslands are part of the cultural heritage and local biodiversity hotspots. Yet, many of them are overgrown by forest. In the past years, several abandoned terraced vineyards and grasslands have been restored by removing the forest, rebuilding the walls and re-introducing the traditional management. We examined restoration success by assessing plant species richness, diversity and species composition in both the aboveground vegetation and soil seed bank in (1) restored, (2) abandoned for 25–50 years, and (3) permanently used areas of six terraced vineyards and six terraced grasslands. Plant species richness and diversity were reduced and species composition altered in the aboveground vegetation of abandoned vineyards and grasslands compared to the permanently used and restored ones. However, species richness, Shannon-diversity and species composition of the aboveground vegetation did not differ between restored and permanently used areas, indicating a successful restoration of the vegetation 10–15 years after restoration. In abandoned vineyards, species richness of plants emerging from the soil seed bank was slightly higher than in permanently used and restored vineyards. No difference in seedling species richness was found between abandoned, permanently used and restored terraced grasslands. Our results showed that the soil seed bank played a minor role for the re-establishment of the above-ground vegetation. We assume that the large species pool in the surroundings and the presence of dispersal vectors are essential for the successful passive restoration of abandoned grassland in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号