首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies).
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ13C signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (13C-enriched signatures) and allochthonous (13C-depleted signatures) resources enter the food web. The migrating behaviour of fishes and shrimps between marine and freshwater during their life cycles can be followed by carbon isotopes. Here, shrimp δ13C signatures were shown to shift from −16‰ (for juveniles under marine influence) to −24.7‰ (for adults in freshwater habitats). For resident species, δ13C values partly reflected the species' habitat preferences along the river continuum : species living in river mouths were 13C-enriched in comparison with those collected upstream.
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ15N values of herbivores/detritivores were 5.0–8.4‰, omnivores 8.8–10.2‰ and carnivores 11–12.7‰.
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns.  相似文献   

2.
Food web complexity and higher-level ecosystem services   总被引:1,自引:1,他引:1  
Studies mostly focused on communities of primary producers have shown that species richness provides and promotes fundamental ecosystem services. However, we know very little about the factors influencing ecosystem services provided by higher trophic levels in natural food webs. Here we present evidence that differences in food web structure and the richness of herbivores in 19 plant‐herbivore‐parasitoid food webs influence the service supplied by natural enemies, namely, the parasitism rates on hosts. Specifically, we find that parasitoids function better in simple food webs than in complex ones, a result relevant to biological control practice. More generally, we show that species richness per se only contributes partially to the understanding of higher‐level ecosystem services in multitrophic communities, and that changes in food web complexity should also be taken into account when predicting the effects of human‐driven disturbances in natural communities.  相似文献   

3.
Abstract We investigated the effects of biodiversity loss across trophic levels and across ecosystems (terrestrial to aquatic) on ecosystem function, in a detritus‐based tropical food web. Diversities of consumers (stream shredders) and resources (leaf litter) were experimentally manipulated by varying the number of species from 3 to 1, using different species combinations, and the effects on leaf breakdown rates were examined. In single‐species shredder treatments, leaf diversity loss affected breakdown rates, but the effect depended on the identity of the leaves remaining in the system: they increased when the most preferred leaf species remained, but decreased when this species was lost (leaf preferences were the same for all shredders). In multi‐species shredder assemblages, breakdown rates were lower than expected from single‐species treatments, suggesting an important role of interspecific competition. This pattern was also evident when oneleaf species was available but not with higher leaf diversity, suggesting that lowered leaf diversity promotes competitive interactions among shredders. The influence of diversity and identity of species across trophic levels and ecosystems on stream functioning points to complex interactions that may well be reflected in other types of ecosystem.  相似文献   

4.
5.
Ecologists increasingly recognize that a consideration of spatial dynamics is essential for resolving many classical problems in community ecology. In the present paper, I argue that understanding how trophic interactions influence population stability can have important implications for the expression of spatial processes. I use two examples to illustrate this point. The first example has to do with spatial determinants of food chain length. Prior theoretical and empirical work has suggested that colonization–extinction dynamics can influence food chain length, at least for specialist consumers. I briefly review evidence and prior theory that food chain length is sensitive to area. A metacommunity scenario, in which each of various patches can have a food chain varying in length (but in which a consumer is not present on a patch unless its required resource is also present), shows that alternative landscape states are possible. This possibility arises if top predators moderate unstable interactions between intermediate predators and basal resources. The second example has to do with the impact of recurrent immigration on the stability of persistent populations. Immigration can either stabilize or destabilize local population dynamics. Moreover, an increase in immigration can decrease average population size for unstable populations with direct density-dependence, or in predator–prey systems with saturating functional responses. These theoretical models suggest that the interplay of temporal variation and spatial fluxes can lead to novel qualitative phenomena.  相似文献   

6.
7.
The effects of disturbance on communities have been a focus of both theoretical and empirical inquiries for many years. Food web stability is hypothesized to be affected by disturbance and the nature of the energy pathways (i.e. allochthonous or autochthonous) of a community. In this study, we investigated whether food webs at paired sites, one in forest and the other in grassland, in ten New Zealand streams along a disturbance gradient differ in their topological structure and robustness. Food web robustness (an indicator of web resistance) assesses the ease with which secondary extinctions permeate the food web following an initial random extinction (disturbance). We found that neither the nature of the energy source nor physical disturbance affected structural metrics or web robustness. As stream systems, particularly in New Zealand, are exposed to regular, unpredictable and dramatic physical disturbance from flooding, it may simply be that the floods result in generalist species dominating and increasing robustness irrespective of the energy source.  相似文献   

8.
持久性有机污染物在水生食物网中的传递行为   总被引:1,自引:0,他引:1  
冯秋园  万祎  刘学勤  刘永 《生态学报》2017,37(9):2845-2857
食物网是持久性有机污染物(POPs)在水生生态系统中传递的重要途径,了解其传递行为与机制是POPs生态暴露风险评价的科学基础。从4个方面展开了讨论和分析:(1)食物网主要特征(营养级和食物链长度)与POPs环境行为的关系;(2)POPs在底栖及底栖-浮游耦合食物网中的环境行为;(3)微食物网对POPs环境行为的作用;(4)食物网的变化对POPs环境行为的影响。主要结论如下:(1)已有研究对水生生物中POPs生物放大作用存在较大争议。一般营养级越高,POPs生物富集性越强,但由于各种生态和生理性质的影响,也存在例外情况。食物链长度与POPs生物富集性呈正相关。(2)POPs通过底栖食物网将沉积物中的POPs向上传递,底栖-浮游食物网的耦合提高了高营养级消费者的暴露风险,目前就POPs在底栖食物网中的生物放大性是否大于浮游食物网存在争议。(3)微生物具有较大的比表面积,是吸附POPs的重要载体。另,沉积物中的微生物通过分解有机质,将POPs释放到水柱中。微生物降解也是环境中POPs脱离环境的重要途径。(4)在内、外压力下,食物网结构和功能发生变化,使物质和能量的传递方向和效率发生改变,并与环境理化性质的变化互相耦合,影响POPs的环境行为。当前研究的重点多集中在POPs在浮游食物网,尤其是高营养级浮游食物网中的环境行为,对POPs在底栖及底栖-浮游耦合食物网和微食物网中环境行为的研究相对缺乏。有关POPs在食物网中环境行为的研究多集中在食物网的某个部分,时间尺度较短,缺乏对POPs环境行为动态变化的研究,未来需深入开展多尺度和多角度的POPs在食物网中环境行为的动态变化研究。新型POPs的生产和使用量不断增加,但有关其在食物网中环境行为的相关分析还较为匮乏,需加强研究。  相似文献   

9.
10.
11.
Food webs and river drainages are both hierarchical networks and complex adaptive systems. How does living within the second affect the first? Longitudinal gradients in productivity, disturbance regimes and habitat structure down rivers have long interested ecologists, but their effects on food web structure and dynamics are just beginning to be explored. Even less is known about how network structure per se influences river and riparian food webs and their members. We offer some preliminary observations and hypotheses about these interactions, emphasizing observations on upstream–downstream changes in food web structure and controls, and introducing some ideas and predictions about the unexplored question of food web responses to some of the network properties of river drainages.  相似文献   

12.
13.
14.
Ecological processes in food webs depend on species interactions. By identifying broad‐scaled interaction patterns, important information on species' ecological roles may be revealed. Here, we use the group model to examine how spatial resolution and proximity influence group structure. We examine a data set from the Barents Sea, with food webs described for both the whole region and 25 subregions. We test how the group structure in the networks differ comparing (1) the regional metaweb to subregions and (2) subregion to subregion. We find that more than half the species in the metaweb change groups when compared to subregions. Between subregions, networks with similar group structure are spatially related. Interestingly, although species overlap is important for similarity in group structure, there are notable exceptions. Our results highlight that species ecological roles vary depending on fine‐scaled differences in the patterns of interactions, and that local network characteristics are important to consider.  相似文献   

15.
16.
Cascading effects of predator diversity and omnivory in a marine food web   总被引:3,自引:1,他引:3  
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs.  相似文献   

17.
Aim The network structure of food webs plays an important role in the maintenance of diversity and ecosystem functioning in ecological communities. Previous research has found that ecosystem size, resource availability, assembly history and biotic interactions can potentially drive food web structure. However, the relative influence of climatic variables that drive broad‐scale biogeographic patterns of species richness and composition has not been explored for food web structure. In this study, we assess the influence of broad‐scale climatic variables in addition to known drivers of food web structure on replicate observations of a single aquatic food web, sampled from the leaves of the pitcher plant (Sarracenia purpurea), at different geographic sites across a broad latitudinal and climatic range. Location Using standardized sampling methods, we conducted an extensive ‘snapshot’ survey of 780 replicated aquatic food webs collected from the leaves of the pitcher plant S. purpurea at 39 sites from northern Florida to Newfoundland and westward to eastern British Columbia. Methods We examined correlations of 15 measures of food web structure at the pitcher and site scales with geographic variation in temperature and precipitation, concentrations of nutrients from atmospheric nitrogen deposition, resource availability, ecosystem size and the abundance of the pitcher plant mosquito (Wyeomyia smithii), a potential keystone species. Results At the scale of a single pitcher plant leaf, linkage density, species richness, measures of chain length and the proportion of omnivores in a web all increased with pitcher volume. Linkage density and species richness were greater at high‐latitude sites, which experience low mean temperatures and precipitation and high annual variation in both of these variables. At the site scale, variation in 8 of the 15 food web metrics decreased at higher latitudes, and variation in measures of chain length increased with the abundance of mosquitoes. Main conclusions Ecosystem size and climatic variables related to latitude were most strongly correlated with network structure of the Sarracenia food web. However, in spite of large sample sizes, thorough standardized sampling and the large geographic extent of the survey, even the best‐fitting models explained less than 40% of the variation in food web structure. In contrast to biogeographic patterns of species richness, food web structure was largely independent of broad‐scale climatic variables. The large proportion of unexplained variance in our analyses suggests that stochastic assembly may be an important determinant of local food web structure.  相似文献   

18.
The structure of the planktonic community and the influence of mesozooplankton migration on the microbial food web were investigated during six diel studies from June 92 to June 93 in the surface waters of a station in the North-Western Mediterranean Sea. Each diel study consisted of sampling at 5 and 40 m every 3 h over 24 h. Most of the times diel cycles did not show any convincing diel patterns in any of the variables studied. Clear zooplankton migration was evident in only two diel studies.The ratio of heterotrophic/autotrophic biomasses varied from 0.68 to 3.0, with a strong dominance of the heterotrophic biomass under oligotrophic conditions. Differences in food web structure were probably related to the influences of coastal water and the North-Western Mediterranean Current. Thus we found that the planktonic food web variability relatable to hydrodynamic variability, to be greater than diel variability. However, very large differences in food web structure among dates were evident. For example proportion of Chl a found in the <10 µm fraction varied from 18 to 96%.  相似文献   

19.
The invertebrate assemblages of the River Lambourn and its tributary, the Winterbourne stream, were investigated as part of a broad ecological study prior to water resource development in the catchment. The longitudinal distribution of the invertebrate fauna within the Winterbourne stream was examined in detail and supporting data for the R. Lambourn revealed that the upstream intermittent section of each water course had an invertebrate assemblage which was distinct from the fauna downstream where flow was permanent. Within the perennial zone taxon richness tended to increase downstream.A one-year programme of monthly quantitative sampling on five distinct biotopes (Ranunculus, Berula, Callitriche, gravel and silt) at two contrasted sites (shaded and unshaded) was undertaken in the lower perennial of the R. Lambourn below the confluence with the Winterbourne. On each study site, the taxon richness, numerical abundance and biomass of invertebrates were significantly higher on the three macrophytes than on gravel and silt. There were also statistically significant seasonal changes in the biomass of invertebrates on each site. Estimates of total biomass of invertebrates per site revealed a late spring peak (May/June) and a late autumn (November/December) peak, neither of which coincided with the summer peak biomass of macrophytes. This suggested that, in the lower perennial, the level of food resources (epiphytic algae in late spring and fallen tree leaves plus decaying macrophytes in autumn) rather than available habitat, were a major influence on population levels for most of the year.Quantitative sampling of each biotope on each site continued in June and December only for a period of 8 years (1971–78), during which time the river experienced a minor drought (1973) and a severe drought (1976). The Chironomidae showed a strong positive response to conditions of low flow in June of 1973 and 1976, when exceptionally high densities of larvae were recorded. Although further between-year differences were recorded in several other major components of the invertebrate fauna, which may have been related to conditions of low discharge, they did not have long-term consequences for the fauna in the lower perennial of the R. Lambourn.In contrast, in the upper perennial, the prolonged drought of 1976 resulted in the loss of wetted perimeter and macrophytes, coupled with deposition of silt, all of which had deleterious effects on the invertebrate assemblages. The following year, despite a normal discharge regime and the removal of silt, some submerged macrophytes were slow to return to their pre-drought condition. In the intermittent section, the drought of 1976 resulted in the total loss of flow for a 16 month period instead of a more typical four month period of water loss.Thus, chalk streams encompass within a single system both stable and extreme hydrological regimes which offer unique opportunities for investigating the processes of community formation and maintenance.  相似文献   

20.
1. Over the last 30 years, many investigations have been performed on the dynamics of bacteria and organic matter in the Breitenbach, a first‐order stream in central Germany. The data now available allow a synthesis of the role of bacteria in the carbon budget, as an example of the general importance of bacteria in stream ecosystems. 2. Comparing measured and estimated inputs and outputs to the ecosystem, the organic matter budget of the Breitenbach is fairly balanced: 1.84 kg C m?2 year?1 (sum of inputs) versus 1.88 kg C m?2 year?1 (sum of outputs). No major missing link remains. 3. The basis of the food web in the Breitenbach is mainly allochthonous organic matter (dissolved and particulate 1.02 and 0.42 kg C m?2 year?1, respectively). Autochthonous gross primary production is 0.4 kg C m?2 year?1. Most of the organic matter leaves the stream via transport to the River Fulda (dissolved and particulate 0.74 and 0.34 kg C m?2 year?1, respectively), the rest by respiration (0.80 kg C m?2 year?1 or 43% of total outputs). 4. Bacteria constitute an important part (36%) of heterotrophic biomass (average: 0.004 kg m?2 bacterial C of 0.011 kg m?2 total heterotrophic C). Bacteria also account for the major fraction (71%) of heterotrophic production: 0.20 of 0.28 kg C m?2 year?1 total heterotrophic production. Bacterial production in the Breitenbach is similar in magnitude to the estimate of photoautotrophic net primary production: both approximately 0.20 kg C m?2 year?1. 5. Protozoa, the main consumers of bacteria in the Breitenbach, consume approximately one‐third of bacterial production (0.07 kg C m?2 year?1). Small metazoa (meiofauna, <0.5 mm) play a lesser role in the consumption of bacteria, consuming <0.01 kg bacterial C m?2 year?1. Larger metazoa (macrofauna, >0.5 mm) consume approximately 10% of bacterial production. Although this is a considerable amount of the carbon resources needed by the macrofauna (0.02 kg C m?2 year?1 of bacterial production versus 0.06 kg C m?2 year?1 macrofauna production plus respiration), the carbon demand of the macrofaunal community is met to a larger extent by particulate organic matter than by bacteria. 6. Bacteria are the main decomposers in the Breitenbach. They account for 78% of heterotrophic respiration (0.47 of 0.60 kg C m?2 year?1) and 59% of total respiration (0.47 of 0.80 kg C m?2 year?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号