首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kennedy  A.D.  Potgieter  A.L.F. 《Plant Ecology》2003,167(2):179-192
Wildfires may be started naturally by lightning or artificially by humans. In the savanna regions of southern Africa, lightning fires tend to occur at the start of the wet season, during October and November, while anthropogenic fires are usually started during the dry season, between July and August. A long-term field manipulation experiment initiated in the Kruger National Park in 1952 was used to explore whether this seasonal divergence affects tree abundance, spatial pattern, size and architecture. After 44 years of prescribed burning treatments that simulated the seasonal incidence of lightning and anthropogenic fires, mean densities of the locally-dominant shrub, Colophospermum mopane, were 638 and 500 trees ha–1 respectively. Trees in burnt plots had aggregated distributions while trees in unburnt plots had random distributions. Significant differences (p < 0.001) were recorded in a range of morphological parameters including tree height, canopy diameter, mean stem circumference and number of stems. The incidence of resprouting also differed significantly between treatments, with burnt trees containing a high proportion of coppiced stems. The differences in tree size and architecture between the mid-dry season and early-wet season burning plots suggest that anthropogenic fires applied during July and August cannot substitute for a natural lightning fire regime. Anthropogenic fire yields a landscape that is shorter, more scrubby and populated by numerous coppiced shrubs than the landscape generated by natural lightning fire conditions.  相似文献   

2.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   

3.
Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.  相似文献   

4.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   

5.
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types.  相似文献   

6.
The effects of 16 years of continuous browsing by goats in a South African savanna at stocking rates intended for bush control were compared with plots unbrowsed for the same period of time. Differences in bush-clump density, structure and species composition were recorded. Bush-clump density did not differ between browsed and unbrowsed plots. Within individual bush-clumps, browsing was shown to impact more on structure than species composition, with smaller, shorter bush-clumps, containing fewer species but much greater stem-densities. Although species presence/absence was little affected by browsing, many species showed differences in abundance, growth and location within browsed and unbrowsed bush-clumps. Species reduced in abundance in browsed plots included Cussonia spicata, Ehretia rigida, Grewia occidentalis, Jasminum angulare and Senecio linifolius. Several species showed reduced growth in browsed plots, particularly those located at bush-clump edges. The relatively unpreferred Aloe ferox was a notable exception. Although browsing had little effect on the composition of the main clump founding species, emergents or late arrivals, there were twice as many single plants in browsed plots and emergence of several species was restricted to the middle of bush-clumps. Comparison of our findings with aerial photographic evidence and other literature suggest that browsing alone is unlikely to significantly reduce scrub cover, although it can clearly control further expansion. Combinations of fire and browsing, rather than one factor alone, are considered likely to act fastest and most effectively to significantly reduce or remove scrub cover altogether.  相似文献   

7.
Fire is an indissoluble component of ecosystems, however quantifying the effects of fire on vegetation is a challenging task as fire lies outside the typical experimental design attributes. A recent simulation study showed that under increased fire regimes positive tree–tree interactions were recorded (Bacelar et al., 2014). Data from experimental burning plots in an African savanna, the Kruger National Park, were collected across unburnt and annual burn plots. Indices of aggregation and spatial autocorrelation of the distribution of trees between different fire regimes were explored. Results show that the distribution of trees under fire were more clumped and exhibited higher spatial autocorrelation than in unburnt plots. In burnt plots spatial autocorrelation values were positive at finer scales and negative at coarser scales potentially indicating co-existence of facilitation and competition within the same ecosystem depending on the scale. The pattern derived here provides inference for (a) fire acting as an increasing aggregation & spatial autocorrelation force, (b) tree survival under fire regimes is potentially facilitated by forming patches of trees and (c) scale-dependent facilitation and competition coexisting within the same ecosystem with finer scale facilitation and coarser scale competition.  相似文献   

8.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

9.
Abstract The native annual Sorghum populations of the Australian wet-dry tropics are highly resilient to dry season fires. During the early wet season, however, fires that occur after the new grass population has emerged can cause catastrophic population crashes. We examined savanna plots that had been burnt in this way, and compared them with adjacent unburnt plots. We found that Sorghum densities in the burnt plots were lower on average by a factor of 10, but that some fires had reduced the density only to one-third of the unburnt plots. It is not clear whether these differences relate directly to site or seasonal factors, or to differences in the way the burning was carried out. Other vegetation components responded to the fires differently: forbs (dicotyledonous herbs) increased in cover, while perennial grasses, woody plants, and overall species richness, were not significantly affected. The amount of leaf litter declined. A population model for Sorghum based on the demography of unburnt populations predicted that they should recover from a wet season burn, taking 7–16 years to return to normal densities. However, the actual field populations did not seem to be recovering, suggesting that wet season fires not only lower densities, but may also fundamentally change population processes in these annual grasses.  相似文献   

10.
The impact of fire on the foraging behaviour of impala (Aepyceros melampus), was studied in the Lake Mburo National Park, Uganda. Two indices of foraging efficiency were used to establish differences in feeding behaviour in burnt and unburnt control areas. These are acceptable grass/browse abundance (AGA/ABA), expressed in terms of feeding time achieved per 50 steps and food ingestion rate (FIR), expressed as the cumulative percentage. Accumulation of above ground grass biomass was also measured in burnt and control areas. After burning, the grazing efficiency remains constant throughout the dry season, while the browsing time achieved per 50 steps decreases drastically. In the control areas AGA decreased with increasing length of the dry season while ABA increased. When expressed in terms of cumulative percentage (FIR), the results show a significant increase of 31% in foraging time spent grazing and a 24% decrease in foraging time spent browsing, in burnt areas. The results confirm the classification of impalas as intermediate or mixed feeders with a distinct preference for grass. Impala foraging patterns after burning are discussed and compared with investigations on the effect of burning on the behaviour of impalas and Buffon's kob (Kobus kob kob) in other areas of Africa.  相似文献   

11.
Aim To describe the nexus between Aboriginal landscape burning and patterns of habitat use by kangaroos in a tropical savanna habitat mosaic, and to provide evidence to evaluate the claim that Aboriginal landscape burning is a game management tool. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the monsoon tropics of northern Australia. Methods The abundance of kangaroo scats was recorded throughout a landscape burnt by Aboriginal people, and used as a proxy for the intensity of habitat use by kangaroos. Scat abundance was assessed along field traverses totalling 112 km, at three time periods: (1) 1–4 weeks following mid‐dry season burning (July 2003); (2) in the late dry season (November 2003); and (3) in the following mid‐dry season (July 2004). We compared the intensity with which kangaroos used burnt vs. unburnt areas in various habitat types, with time since mid‐dry season burning. Scats were collected from areas that had been burnt to a varying extent and the abundance of carbon and nitrogen stable isotopes (δ13C and δ15N) and carbon to nitrogen ratios (C : N) determined. Results There was clear evidence of an interaction between burning and habitat type on the abundance of kangaroo scats. Scats were much more abundant in burnt vs. unburnt areas in the moist habitats, but the opposite effect was observed in the dry rocky habitats, with higher scat abundance in unburnt areas. This interactive effect of burning and habitat type on scat abundance was observed immediately (< 4 weeks) following fire, and was still present one year later. High concentrations of nitrogen in resprouting grasses indicate that burnt areas may provide kangaroos with greater access to nutrients. The isotopic composition of scats indicates that kangaroos feeding in extensively burnt areas were consuming more grasses, and possibly sedges, than kangaroos feeding in unburnt areas. Main conclusions The fine‐scale mosaic of burnt and unburnt areas created by mid‐dry season Aboriginal landscape burning has clear effects on the distribution of kangaroos. Kangaroos move into burnt moist habitats and away from burnt dry, rocky habitats. Isotopic analysis of scats suggests that the mechanism driving this effect is the increased abundance of nitrogen rich grasses in burnt moist habitats.  相似文献   

12.
Question: We investigated how cattle and European hares, the two most widespread exotic herbivores in Patagonia, affect species composition, life‐form composition and community structure during the first 6 years of vegetation recovery following severe burning of fire‐resistant subalpine forests and fire‐prone tall shrublands. We asked how the effects of introduced herbivores on post‐fire plant community attributes affect flammability of the vegetation. Location: Nahuel Huapi National Park, northwest Patagonia, Argentina Methods: We installed fenced plots to exclude livestock and European hares from severely burned subalpine forests of Nothofagus pumilio and adjacent tall shrublands of N. antarctica. The former is an obligate seed reproducer, whereas the latter and all other woody dominants of the shrubland vigorously resprout after burning. Results: Repeated measures ANOVA of annual measurements over the 2001‐2006 period indicate that cattle and hare exclusion had significant but complex effects on the cover of graminoids, forbs, climber species and woody species in the two burned community types. Significant interactions between the effects of cattle and hares varied by plant life forms between the two communities, which implies that their synergistic effects are community dependent. Conclusions: Following severe fires, the combined effects of cattle and hares inhibit forest recovery and favour transition to shrublands dominated by resprouting woody species. This herbivore‐induced trend in vegetation structure is consistent with the hypothesis that the effects of exotic herbivores at recently burned sites contribute to an increase in the overall flammability of the Patagonian landscape.  相似文献   

13.
Ecological theory predicts the strongest ecosystem effects of herbivory when dominant and ecologically important species are consumed. Bilberry, Vaccinium myrtillus, is such a key plant species, attractive to many other species in the boreal forests, for example ungulate and invertebrate herbivores. Large herbivores may remove substantial biomass and alter plant quality and therefore affect abundance and populations of invertebrate animals sharing the same food plant. We combined experimental exclusion of ungulates with a browsing intensity gradient to investigate the 15-year effect of ungulate (Cervus elaphus and Ovis aries) browsing on bilberry plant size and on bilberry-feeding herbivorous larvae (Lepidoptera and Symphyta), in a Norwegian old growth boreal forest ecosystem. Bilberry ramets in exclosure plots had nearly nine times higher dry mass and three times higher abundance of invertebrates feeding on them than in ungulate-access plots. Sweep-netting data verified these findings as larval numbers were twice as high in exclosure plots. The pattern in the large herbivore effects on bilberry size and abundance of herbivorous larvae were identical along the browsing gradient. Differences in larval abundance between treatments, as indicated by leaf-chewing, increased during the 15-year study period, and the community fluctuations were larger when ungulate herbivores were excluded. The browsing effect was moderated by plant quality as larval densities were lowest on both heavily-browsed and non-browsed plants, and highest on ramets that had 50–74% of annual shoots browsed. Our study supports previous findings in that bilberry is relatively disturbance tolerant and may recover quickly, but that ungulates may compete with herbivorous larvae for food biomass. Additionally, our results strongly indicates that population insect community peaks and fluctuations are dampened by ungulate consumption. Our findings add to the understanding on how ungulates may structure forest ecosystems directly and indirectly.  相似文献   

14.
Impacts of large herbivores (>5 kg) on woody plants in African savannas are potentially most severe among plants shorter than 1.6 m. It is well established that severe browsing leads to longer shoots, yet prevents saplings from recruiting into adult size‐classes in African savannas. Increased shoot length, indicating faster shoot growth, is often associated with reduced concentrations of tannins and increased nutrient concentrations, suggesting carbon limitation. We hypothesized that, on average, large herbivores suppress stem height or circumference, but increase shoot length. We also hypothesized that if there were concomitant positive effects on nutrients, or negative effects on tannin concentrations, they would be greatest early in the wet season. We sampled saplings of four deciduous woody species (Acacia grandicornuta, Dichrostachys cinerea, Combretum apiculatum and Grewia flavescens) at different stages of the wet season in a large‐scale, long‐term herbivore exclusion experiment in Kruger National Park, South Africa. Plant height, shoot length and stem circumference were generally not adversely affected by large herbivores, suggesting C limitation is rarely present among deciduous saplings in semi‐arid African savannas, allowing them to tolerate browsing. Time since first rainfall emerged as a predominant factor consistently affecting nutrient and tannin concentrations, rather than large herbivores. Nitrogen and phosphorus generally decreased (by 20–50%), while condensed tannin concentration increased (150–350%) during the wet season, except for one species. We postulate that A. grandicornuta is less prone than other species to accumulating tannins during the wet season because of high investment of C in spines. Although nutrient and tannin concentrations were generally not affected by large herbivores, species‐specific responses were evident very early in the wet season, which is when herbivore populations are most likely to be affected by differential forage quality among plants.  相似文献   

15.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

16.
Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle‐dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land‐use strategies on a Namibian savanna: grazer‐ versus browser‐dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land‐use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing‐dominated land‐use strategies, land‐use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.  相似文献   

17.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   

18.
19.
Fire and overgrazing reduce aboveground biomass, leading to land degradation and potential impacts on soil organic carbon (SOC) and total nitrogen (TN) dynamics. However, empirical data are lacking on how prescribed burning and livestock exclusion impact SOC in the long-term. Here we analyse the effects of 19 years of prescribed annual burning and livestock exclusion on tree density, SOC and TN concentrations in the Sudanian savanna ecoregion at two sites (Tiogo and Laba) in Burkina Faso. Results revealed that neither livestock exclusion nor prescribed burning had significant impact on SOC and TN concentrations. The results at both sites indicate that 19 years of livestock and fire exclusion did not result in a significant increase in tree density compared to grazing and annual prescribed burning. The overall mean (± SEM) of SOC stocks in the 0–50 cm depth increment in the unburnt (53.5 ± 4.7 Mg C ha−1) and annually burnt (56.4 ± 4.3 Mg C ha−1) plots at Tiogo were not statistically different. Similarly, at Laba there was no significant difference between the corresponding figures in the unburnt (37.9 ± 2.6 Mg ha−1) and in the annually burnt plots (38.6 ± 1.9 Mg ha−1). Increases in belowground inputs from root turnover may have countered changes in aboveground biomass, resulting in no net change in SOC and TN. We conclude that, contrary to our expectation and current policy recommendations, restricting burning or grazing did not result in increase in SOC stocks in this dry savanna ecosystem.  相似文献   

20.
The ongoing loss of large trees and densification of shrubs are two prevalent processes that take place in African savannas, with profound consequences for their structure and function. We evaluated herbivore impacts on savanna woody communities using a long-term exclosure experiment in the Kruger National Park, South Africa, with three treatments: the exclusion of large mammals only (i.e. elephant and giraffe), exclusion of all herbivores larger than a hare, and areas open to all herbivores. We asked three questions: (1) How did variable exclusion of herbivores affect woody density and structure across the catena (i.e. riparian, sodic and crest vegetation)? (2) Did the exclusion of herbivores result in unique woody species composition? (3) Did herbivore exclusion result in a higher proportion of palatable species? After 17 years, we found that herbivores mainly affected the heights and densities of existing species, rather than leading to turnover of woody species assemblages. Although densities of individuals increased in the full exclosure (350 ha−1), the change was more moderate than expected. By contrast, mixed mega-and meso-herbivores decreased the number of trees and shrubs (decreases of 780 ha−1) via a variety of physical impacts. Meso-herbivores alone, on the other hand, had less impact on individual density (i.e. no change), but limited average height growth and canopy dimensions in certain habitat types. Where elephants are present, they are effective at reducing the density of woody stems to the point of counteracting woody encroachment, but at the same time are actively preventing the persistence of large trees (>5 m) as well as preventing trees from recruiting to larger size classes. However, the lack of massive recruitment and woody cover increases with elephant exclusion, especially for more preferred species, suggests that factors beyond elephants, such as dispersal limitation, seed predation, and drought, are also acting upon species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号