首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Aim Recent studies using vegetation plots have demonstrated that habitat type is a good predictor of the level of plant invasion, expressed as the proportion of alien to all species. At local scale, habitat types explain the level of invasion much better than alien propagule pressure. Moreover, it has been shown that patterns of habitat invasion are consistent among European regions with contrasting climates, biogeography, history and socioeconomic background. Here we use these findings as a basis for mapping the level of plant invasion in Europe. Location European Union and some adjacent countries. Methods We used 52,480 vegetation plots from Catalonia (NE Spain), Czech Republic and Great Britain to quantify the levels of invasion by neophytes (alien plant species introduced after ad 1500) in 33 habitat types. Then we estimated the proportion of each of these habitat types in CORINE land‐cover classes and calculated the level of invasion for each class. We projected the levels of invasion on the CORINE land‐cover map of Europe, extrapolating Catalonian data to the Mediterranean bioregion, Czech data to the Continental bioregion, British data to the British Isles and combined Czech–British data to the Atlantic and Boreal bioregions. Results The highest levels of invasion were predicted for agricultural, urban and industrial land‐cover classes, low levels for natural and semi‐natural grasslands and most woodlands, and the lowest levels for sclerophyllous vegetation, heathlands and peatlands. The resulting map of the level of invasion reflected the distribution of these land‐cover classes across Europe. Main conclusions High level of invasion is predicted in lowland areas of the temperate zone of western and central Europe and low level in the boreal zone and mountain regions across the continent. Low level of invasion is also predicted in the Mediterranean region except its coastline, river corridors and areas with irrigated agricultural land.  相似文献   

3.
A new land-cover map of Africa for the year 2000   总被引:6,自引:0,他引:6  
Aim In the framework of the Global Land Cover 2000 (GLC 2000), a land‐cover map of Africa has been produced at a spatial resolution of 1 km using data from four sensors on‐board four different Earth observing satellites. Location The map documents the location and distribution of major vegetation types and non‐vegetated land surface formations for the entire African continent plus Madagascar and the other surrounding islands. Methods The bulk of these data were acquired on a daily basis throughout the year 2000 by the VEGETATION sensor on‐board the SPOT‐4 satellite. The map of vegetation cover has been produced based upon the spectral response and the temporal profile of the vegetation cover. Digital image processing and geographical information systems techniques were employed, together with local knowledge, high resolution imagery and expert consultation, to compile a cartographic map product. Radar data and thermal sensors were also used for specific land‐cover classes. Results A total of 27 land cover categories are documented, which has more thematic classes than previously published land cover maps of Africa contain. Systematic comparison with existing land cover data and 30‐m resolution imagery from Landsat are presented, and the map is also compared with other pan‐continental land cover maps. The map and digital data base are freely available for non‐commercial uses from http://www.gvm.jrc.it/tem/africa/products.htm Main conclusions The map improves our state of knowledge of the land‐cover of Africa and presents the most spatially detailed view yet published at this scale. This first version of the map should provide an important input for regional stratification and planning purposes for natural resources, biodiversity and climate studies.  相似文献   

4.
We analyze the spatial patterns of natural dune cover patches and their plant richness, comparing coastal sites with different levels of human pressure in central Italy. We created a detailed land cover map of dune sites. The spatial pattern of natural dune cover types was characterized by computing a set of patch-based metrics. To quantify patch plant richness, we used 16 m2 vegetation plots, randomly distributed on coastal dune cover types. For each patch, the richness of the entire pool of species and of three guilds (i.e., typical dune, ruderal, and alien species) was considered. We compared different levels of human pressure on coastal dunes focusing on pattern metrics and floristic information by using the nonparametric Kruskal–Wallis test. In sites with high human pressure, we have observed a general simplification in the natural dune spatial pattern and a decline of plant richness but with a specific response for each cover type. Alien and ruderal species presented low richness in all patches. In coastal dunes, the harsh ecological conditions and the strong sea–inland gradient shape the distribution of human activities and control the number of ruderal species. The approach effectively describes fragmentation and biodiversity in dune ecosystems.  相似文献   

5.
The following paper describes patterns of diversity across major habitat types in a relatively well preserved coastal dune system in central Italy. The research addresses the following questions: (a) whether different habitats defined on the base of a land cover map support similar levels of biodiversity in terms of vascular flora richness and number of rare and endangered species, and (b) how each habitat contributes to the total species diversity of the coastal environment. A random stratified sampling approach based on a detailed land cover map was applied to construct rarefaction curves for each habitat type and to estimate total species richness. In addition, the number of exclusive, rare and endangered species was calculated for each habitat type. Results highlight the importance of the coastal dune zonation (embryo-dune, main dune, transition and stabilized dune) in species conservation because they harbour progressively higher species richness. However, differences among these habitats were not significant, so no particular species rich “hotspots” could be evidenced. On the contrary, rarefaction curves show that the upper beach (strand) habitat sustains significantly smaller number of species, but surprisingly, it shows the highest rarity values and highest proportion of endangered species. Therefore, for the establishment of successful biodiversity conservation programs in these coastal environments, it is imperative not only to conserve biologically rich hotspots but also to include species poor habitats containing endangered or unique elements. Thus, the complete coastal vegetation mosaic including all coastal habitats is important to adequately characterize the plant species diversity of coastal dune ecosystems.  相似文献   

6.
We apply a method to evaluate the strength of the evidence for deviations from uniform land change in a coastal area, in the context of Intensity Analysis. The errors in the CORINE maps at 1990 and 2006 can influence the apparent change, but the errors are unknown because error assessment of the 1990 map has never been released, while the error of the 2006 map has been checked for only some countries. The 1990 and the 2006 maps of a coastal watershed in Portugal served as the data to compute the intensities of changes among eight categories. We evaluate the sizes and types of errors that could explain deviations from uniform intensities. Errors in 2.0% of the 2006 map can explain all apparent deviations from uniform gains. Errors in 1.5% of the 1990 map can explain all apparent deviations from uniform losses. Errors in less than 0.7% of the 1990 map can explain all apparent deviations from uniform transitions to each gaining category. We analyse the strength of the evidence for deviations from uniform intensities in light of historical processes of change. Historical processes can explain some transitions that the data show, while the hypothesised errors in the data are the explanation for other transitions that are not consistent with known processes. Inconsistent transitions are an indication of the misclassification errors that could propagate to other land cover change applications, as in the assessment of hydrological processes.  相似文献   

7.
In land cover mapping, the complexity of landscapes is fitted into classes that may limit the recognition of natural variability. In this study, we tested the power of land cover classes (defined on the CORINE land cover classification scheme, a standardized legend set by EU for land cover inventory) to separate different vascular plant assemblages in forest ecosystems. In order to separately identify the role of different sources of inconsistency between land cover classes and species composition, we compared three different inventory processes, based on (i) dominant tree species as observed in the field, (ii) visual interpretation of remotely sensed images and (iii) semi-automatic supervised classification of satellite images. Our results underline that classifying forest ecosystems on the basis of their canopy species produces an over-simplification of habitat variability. Consequently, land cover maps based on non-specialized classification schemes should not be regarded as good proxies for plant biodiversity. If land cover maps are intended to describe and manage landscapes and their associated biodiversity, it is necessary to improve their capacity to represent the complexity of ecosystems.  相似文献   

8.
Lewis  Megan M. 《Plant Ecology》1998,136(2):133-133
This study demonstrates a vegetation mapping methodology that relates the reflectance information contained in multispectral imagery to traditionally accepted ecological classifications. Key elements of the approach used are (a) the use of cover rather than density or presence/absence to quantify the vegetation, (b) the inclusion of physical components as well as vegetation cover to describe and classify field sites, (c) development of an objective land cover classification from this quantitative data, (d) use of the field sample sites as training areas for the spectral classification, and (e) the use of a discriminant function to effectively tie the two classifications together. Land cover over 39000 ha of Australian chenopod shrubland was classified into nine groups using agglomerative hierarchical clustering, a discriminant function developed to relate cover and spectral classes, and the vegetation mapped using a maximum likelihood classification of multi-date Landsat TM imagery. The accuracy of the mapping was assessed with an independent set of field samples and by comparison with a map of land systems previously interpreted from aerial photography. Overall agreement between the digital classification and the land system map was good. The units that have been mapped are those derived from numeric vegetation classification, demonstrating that accepted ecological methods and sound image analysis can be successfully combined.  相似文献   

9.
Direct impacts of human land use and indirect impacts of anthropogenic climate change may alter land cover and associated ecosystem function, affecting ecological goods and services. Considerable work has been done to identify long‐term global trends in vegetation greenness, which is associated with primary productivity, using remote sensing. Trend analysis of satellite observations is subject to error, and ecosystem change can be confused with interannual variability. However, the relative trends of land cover classes may hold clues about differential ecosystem response to environmental forcing. Our aim was to identify phenological variability and 10‐year trends for the major land cover classes in the Great Basin. This case study involved two steps: a regional, phenology‐based land cover classification and an identification of phenological variability and 10‐year trends stratified by land cover class. The analysis used a 10‐year time series of Advanced Very High Resolution Radiometer satellite data to assess regional scale land cover variability and identify change. The phenology‐based regional classification was more detailed and accurate than national or global products. Phenological variability over the 10‐year period was high, with substantial shifts in timing of start of season of up to 9 weeks. The mean long‐term trends of montane land cover classes were significantly different from valley land cover classes due to a poor response of montane shrubland and pinyon‐juniper woodland to the early 1990s drought. The differential response during the 1990s suggests that valley ecosystems may be more resilient and montane ecosystems more susceptible to prolonged drought. This type of regional‐scale land cover analysis is necessary to characterize current patterns of land cover phenology, distinguish between anthropogenically driven land cover change and interannual variability, and identify ecosystems potentially susceptible to regional and global change.  相似文献   

10.
11.
Question: Can recent satellite imagery of coarse spatial resolution support forest cover assessment and mapping at the regional level? Location: Continental southeast Asia. Methods: Forest cover mapping was based on digital classification of SPOT4‐VEGETATION satellite images of 1 km spatial resolution from the dry seasons 1998/1999 and 1999/2000. Following a geographical stratification, the spectral clusters were visually assigned to land cover classes. The forest classes were validated by an independent set of maps, derived from interpretation of satellite imagery of high spatial resolution (Landsat TM, 30 m). Forest area estimates from the regional forest cover map were compared to the forest figures of the FAO database. Results: The regional forest cover map displays 12 forest and land cover classes. The mapping of the region's deciduous and fragmented forest cover remained challenging. A high correlation was found between forest area estimates obtained from this map and from the Landsat TM derived maps. The regional and sub‐regional forest area estimates were close to those reported by FAO. Conclusion: SPOT4‐VEGETATION satellite imagery can be used for mapping consistently and uniformly the extent and distribution of the broad forest cover types at the regional scale. The new map can be considered as an update and improvement on existing regional forest cover maps.  相似文献   

12.
The bryophytic flora has been widely studied in Atlantic coastal dune environments while bryological literature addressing the Mediterranean bryophytes is still scarce and fragmented, although they are an important component of this area, especially considering their ability to colonize and stabilize sandy soils. The aims of this study were: (i) to analyze the taxonomy, chorology and ecology of coastal dunes bryoflora; (ii) to analyze distribution patterns of bryophytic species along a coastal dune vegetation zonation. We used as coastal dune model system a particularly well-preserved study area of the Sardinian coast (Italy), which includes several habitats listed in European Habitats Directive 92/43/EEC. We conducted a general survey of the area and a random sampling. A total of 20 bryophytic species were detected most of which were acrocarpous mosses and, to a lesser extent, pleurocarpous and liverworts. Most bryophytes are pioneer colonizers, reflecting their adaptation to environments with high levels of stress/disturbance conditions such as those of coastal dunes. Finally, in this study we described for the first time how bryophytic species are distributed along a Mediterranean coastal dune vegetation zonation, focusing also on their chorological and ecological characteristics and on how they seem to follow the sea-land gradient, probably in response to different environmental conditions developing along this gradient.  相似文献   

13.
Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5º S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural and human induced disturbances, and promotes the development of dune vegetation as natural barriers can provide societal and conservation benefits in coastal ecosystems.  相似文献   

14.
Aim This paper evaluates a method of combining data from GPS ground survey with classifications of medium spatial resolution LANDSAT imagery to distinguish variations within Neotropical savannas and to characterize the boundaries between savanna areas and the associated gallery forests, seasonally dry forests and wetland communities. Location Rio Bravo Conservation Area, Orange Walk District, Belize, Central America. Methods Dry season LANDSAT data for 10 April 1993 and 9 March 2001 covering a conservation area of 240,000 acres (97,459 ha), were rectified to sub‐pixel accuracy using ground control points positioned by GPS ground survey. The 1993 image was used to assess the accuracy with which the boundaries between the savanna matrix and gallery forests, high forests, wetlands and water bodies could be discriminated. The image was classified by a maximum likelihood (ML) classifier and the shapes and areas of forest and wetland classes were compared with an interpretation of these land cover types from 1 : 24,000 aerial photography, mapped at 1 : 50,000 scale in 1993. The 2001 image was used to assess whether different subtypes of savanna could be distinguished from LANDSAT data. This required the creation of a reference (‘ground truth’) data set for testing classifications of the image. One hundred and sixty sample patches (650 ha, distributed over an area of 7000 ha) of ten sub‐types of savanna vegetation and associates identified using a physiognomic classification scheme, were delineated on the ground by GPS and divided into two subsets for training and testing. Continuous classifications of LANDSAT data covering the savannas were developed that estimated potential contributions from up to five sub‐types of land cover (grassland, wetland, pine woodland, gallery forest and palmetto). The accuracy of each classification was assessed by comparison against ground data. An ML classification was also produced for the 2001 image using the same areas for training. This allowed a comparison of the relative accuracy of both continuous and Boolean ML methods for classifying savanna areas. Results The boundary between savannas and evergreen forests, gallery forests and open water in the study region could be delineated by the ML classifier to within 2 pixels (60 m) using LANDSAT imagery. However, the constituent sub‐types within the savanna were poorly discriminated. Whilst the shape and extent of closed canopy forest, gallery forest, wetlands and water bodies agreed closely with the distributions interpreted from aerial photography, classes such as ‘open pine savanna’ or ‘grassland’ were only 45–65% accurate when tested against ground data. A continuous classification, estimating the proportions of three savanna vegetation subtypes (grassland, marshland and woodland) present in each pixel, correctly classified more of the ground data for these cover types than the comparable ML result. Proportional mixtures of the land cover estimated by the continuous classifier also compared realistically with the vegetation formations observed along ground transects. Main conclusions By using GPS, a ground survey of vegetation cover was accurately matched to remotely sensed imagery and the accuracy of delineating boundaries and classifying areas of savanna was assessed directly. This showed that ML classification techniques can reliably delineate the boundaries of savannas, but continuous classifiers more accurately and realistically represent the distribution of the subtypes comprising savanna land cover. By combining these ground survey and image classification methods, medium spatial resolution satellite sensor data can provide an affordable means for land managers to assess the nature, extent and distribution of savanna formations. Over time, using the archives of LANDSAT (and SPOT) data together with marker sites surveyed in the field, quantitative changes in the extents and boundaries of savannas in response to both natural (e.g. fire, hurricane and drought) and anthropogenic (e.g. cutting and disturbance) factors can be assessed.  相似文献   

15.
Presence and cover of alien plants were analysed in relation to recent naturalness changes (1956–1999) in the Llobregat delta by means of GIS techniques and field surveys. Two land cover maps of 1956 and 1999 were generated by photo-interpretation of orthoimages and they were then reclassified into naturalness classes, defined as the degree of preservation of the pristine state. The resulting naturalness maps were combined in order to obtain a naturalness change map, which was used to design field sampling in four pristine communities: reedbeds, rushbeds, halophilous scrubs and fixed dune communities. Two study areas were selected for each community and three stability regimes (stable, semi-stable and non-stable) obtained from the naturalness change map. Five vegetation inventories were performed on average in each of these areas using the classical sigmatist method. Results showed a negative relationship between stability and invasibility, with several variations between communities. No alien species were found in stable areas of all communities. Alien species number, species percentage and relative cover increased from semi-stable to non-stable regimes in reedbeds and dune communities, indicating that reversion towards the climax reduces opportunities for alien establishment in these communities. In contrast, halophilous habitats such as rushbeds and scrubs did not exhibit significant differences between semi-stable and non-stable plots, probably because saline stress makes their invasion by alien plants difficult, even under disturbance.  相似文献   

16.
17.
Our focus here is on how vegetation management can be used to manipulate the balance of ecosystem services at a landscape scale. Across a landscape, vegetation can be maintained or restored or modified or removed and replaced to meet the changing needs of society, giving mosaics of vegetation types and ‘condition classes’ that can range from intact native ecosystems to highly modified systems. These various classes will produce different levels and types of ecosystem services and the challenge for natural resource management programs and land management decisions is to be able to consider the complex nature of trade-offs between a wide range of ecosystem services. We use vegetation types and their condition classes as a first approximation or surrogate to define and map the underlying ecosystems in terms of their regulating, supporting, provisioning and cultural services. In using vegetation as a surrogate, we believe it is important to describe natural or modified (e.g. agronomic) vegetation classes in terms of structure – which in turn is related to ecosystem function (rooting depth, nutrient recycling, carbon capture, water use, etc.). This approach enables changes in vegetation as a result of land use to be coupled with changes to surface and groundwater resources and other physical and chemical properties of soils.For Australian ecosystems an existing structural classification based on height and cover of all vegetation layers is suggested as the appropriate functional vegetation classification. This classification can be used with a framework for mapping and manipulating vegetation condition classes. These classes are based on the degree of modification to pre-existing vegetation and, in the case of biodiversity, this is the original vegetation. A landscape approach enables a user to visualise and evaluate the trade-offs between economic and environmental objectives at a spatial scale at which the delivery of ecosystem services can meaningfully be influenced and reported. Such trade-offs can be defined using a simple scoring system or, if the ecological and socio-economic data exist in sufficient detail, using process-based models.Existing Australian databases contain information that can be aggregated at the landscape and water catchment scales. The available spatial information includes socio-economic data, terrain, vegetation type and cover, soils and their hydrological properties, groundwater quantity and surface water flows. Our approach supports use of this information to design vegetation management interventions for delivery of an appropriate mix of ecosystem services across landscapes with diverse land uses.  相似文献   

18.
Cooper  Alan  Loftus  Mortimer 《Plant Ecology》1998,135(2):229-241
Multivariate land classification and land cover mapping by aerial photographic interpretation were used to model spatial variation of land cover in the Wicklow Mountains, Ireland and to structure a stratified random sampling programme of upland blanket bog vegetation. The total area of blanket bog with gully-erosion features was estimated as 33% of the area studied. Vegetation with hand peat-cutting patterns was estimated at 5%, and there was 35% undissected (intact) vegetation. There were differences between land classes in the estimated area of land cover with gully-erosion features or hand peat-cutting patterns.Sample vegetation quadrats, stratified by land class and aerial photographic land cover type, were grouped by their plant species composition. The groups represented ombrotrophic mire, soligenous mire and shrub heath vegetation. There was significant association between vegetation group and land class, related to variation in regional landscape type, but no significant association between vegetation group and the aerial photographic land cover types, undissected (intact) and dissected (gullied and cut-over) peats. It is proposed that the similarity of vegetation between undissected and dissected blanket bog is related to vegetation regeneration. The need to consider differences in vegetation distribution, composition and dynamics in ecological management strategies is emphasised. The study demonstrated the value of stratified random field sampling for cost-efficient regional ecological assessment in upland blanket bog landscapes typified by the Wicklow mountains, Ireland.  相似文献   

19.
Accurate and up to date land use and land cover (LU/LC) changes information is the main source to understanding and assessing the environmental outcomes of such changes and is important for development plans. Thus, this study quantified the outlines of land cover variation of 10-years in the northwestern costal land of the Red Sea, Saudi Arabia. Two different supervised classification algorithms are visualized and evaluated to preparing a policy recommendation for the proper improvements towards better determining the tendency and the proportion of the vegetation cover changes. Firstly, to determine present vegetation structure of study area, 78 stands with a size of 50 × 50 m were analysed. Secondly, to obtain the vegetation dynamics in this area, two satellite images of temporal data sets were used; therefore, SPOT-5 images were obtained in 2004 and 2013. For each data set, four SPOT-5 scenes were placed into approximately 250-km intervals to cover the northwestern coastal land of the Red Sea. Both supervised and non-supervised cataloguing methods were attained towards organise the study area in 4-major land cover classes through using 5 various organizations algorithms. Approximately 900 points were evenly distributed within each SPOT-5 image and used for assessment accuracy. The floristic composition exhibits high diversity with 142 species and seven vegetation types were identified after multivariate analysis (VG I: Acacia tortilis-Acacia ehrenbergiana, VG II: Acacia tortilis-Stipagrostis plumosa, VG III: Zygophyllum coccineum-Zygophyllum simplex, VG IV: Acacia raddiana-Lycium shawii-Anabasis setifera, VG V: Tamarix aucheriana-Juncus rigidus, VG VI: Capparis decidua-Zygophyllum simplex and VG VII: Avicennia marina-Aristida adscensionis) and ranged between halophytic vegetation on the coast to xerophytic vegetation with scattered Acacia trees inland. The dynamic results showed rapid, imbalanced variations arises between 3-land cover classes (areas as urban, vegetation and desert). However, these findings shall serve as the baseline data for the design of rehabilitation programs that conserve biodiversity in arid regions and form treasured resources for an urban planner and decision makers to device bearable usage of land and environmental planning.  相似文献   

20.
Our work evaluated the anthropic effects on the landscape structure of the Lençóis Maranhenses National Park (LMNP) and its Buffer Zone, and proposed strategies for the region’s conservation. LMNP is an important protected area in Brazilian north coast which protects a unique wetland ecosystem composed of sand dunes fields and a coastal vegetation called restinga. Supervised mapping of LMNP and a surrounding buffer of 3 km was carried out through high resolution and fine scale (1:5000) satellite images. The mapped area was subdivided in 1000 ha hexagonal Analysis Units (AU) and the following landscape metrics were calculated for each one of them: cover area (CA) of each soil cover class - dune fields (CA-DUNES), water bodies (CA-WATER), dense restinga (CADENSE), scattered restinga (CA-SCATTER), grassland (CA-SANDY), mangroves (CA-MANG), anthropogenic activity (CA-ANTRO) and, secondary vegetation (CA-SECOND); Landscape Shannon Diversity Index (SHDI), and; percentage of native vegetation cover (NV−COV). Pearson correlations were performed between the CA of each class and SHDI to identify the classes most correlated to CA-ANTRO. Our results showed that anthropic classes (crops, trails, and villages) had a stronger correlation (Pearson Correlation, r ≈ 0.65) with phytophysiognomies of dense restinga, secondary vegetation and SHDI, thus indicating that the land use conversion occurs in dense restinga areas and promotes vegetation secondarization, as well as increasing fragmentation. At least, 42% of the dense restinga habitats was destroyed due to human activities. Five conservation and restoration strategies were proposed in a local scale depending on the percentage of native vegetation cover on each AU, from the most to less conserved: (a) only conservation; (b) conservation with management; (c) management; (d) management and restoration; and, (e) restoration. The implementation of Agroforestry Systems with agro-successional restoration goals was recommended as an alternative for land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号