首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the feeding of three small-sized sigmodontine rodents (Oligoryzomys nigripes Olfers, 1818,Akodon montensis Thomas, 1913, andDelomys dorsalis Hensel, 1872) on fruiting plants in theAraucaria forest of southern Brazil. We offered to wild-captured animals fruits of 22 plant species in 14 families. For each individual, we recorded consumption patterns of pulp and seed. We also analyzed fecal samples to determine the relative abundance of invertebrates, fruit and seed parts, and fungi. The three rodents showed marked potential frugivory, feeding on most species offered. OnlyO. nigripes showed differences in relation to seed-size categories, consuming a high proportion of ‘small’ (diameter ≤2.5 mm) vs ‘large’ seeds. The rodents may be involved in seed dispersion of three plant species, by defecation of viable seeds of twoLeandra (Melastomataceae) species and also by removing the pulp ofMyrceugenia miersiana (Myrtaceae) fruits without swallowing or damaging their relatively large seeds, thus, potentially increasing germination rates ofM. miersiana. Diet analyses indicated no significant difference among proportions of seed/fruit in the fecal samples of the three species of rodents (33 to 41% of plant material). Our results suggest that the three focal species are the main small-mammal seed predators on the ground ofAraucaria forests.  相似文献   

2.
Food availability is considered to be a primary factor affecting animal populations, yet few experimental tests have been performed to evaluate its actual importance in species‐rich ecosystems such as rainforests. It has been suggested that in such systems certain plant species may act as “keystone” resources for animals, but the importance of presumed keystone resources for populations has not been quantified experimentally. Using complementary seed removal and seed‐addition experiments, we determined how the supply of a presumed keystone resource, seeds of Araucaria angustifolia, affects short‐term demography of their main consumer group (small rodents) in a biodiversity hotspot, the Brazilian Atlantic Forest. We hypothesized that (i) the harvest of A. angustifolia seeds by human populations has negative impacts on rodents, and (ii) these seeds are a limiting resource for rodent populations. To test these hypotheses, we monitored populations of two species of numerically dominant rodents (Delomys dorsalis and Akodon montensis) within replicated control‐experimental plots. Manipulations of seed supply over 2 years had little effect on population size, body condition, survival, or reproduction of the two rodents, suggesting that, in the short‐term (within one generation), their populations are not food limited in Araucaria forests. Despite apparently having all the characteristics of a keystone resource, as currently defined in the literature, the seeds of A. angustifolia had limited influence on the short‐term demography of their main consumer group. In situations where purported keystone resources are seasonally abundant, their actual importance may be lower than generally assumed, and these resources then may have only localized and temporary effects on consumer populations.  相似文献   

3.
In this study, we test for the key bioclimatic variables that significantly explain the current distribution of plant species richness in a southern African ecosystem as a preamble to predicting plant species richness under a changed climate. We used 54,000 records of georeferenced plant species data to calculate species richness and spatially interpolated climate data to derive nineteen bioclimatic variables. Next, we determined the key bioclimatic variables explaining variation in species richness across Zimbabwe using regression analysis. Our results show that two bioclimatic variables, that is, precipitation of the warmest quarter (R2 = 0.92, P < 0.001) and temperature of the warmest month (R2 = 0.67, P < 0.001) significantly explain variation in plant species richness. In addition, results of bioclimatic modelling using future climate change projections show a reduction in the current bio‐climatically suitable area that supports high plant species richness. However, in high‐altitude areas, plant richness is less sensitive to climate change while low‐altitude areas show high sensitivity. Our results have important implications to biodiversity conservation in areas sensitive to climate change; for example, high‐altitude areas are likely to continue being biodiversity hotspots, as such future conservation efforts should be concentrated in these areas.  相似文献   

4.
Hantaviruses may cause serious disease when transmitted to humans by their rodent hosts. Since their emergence in the Americas in 1993, there have been extensive efforts to understand the role of environmental factors on the presence of these viruses in their host rodent populations. HPS outbreaks have been linked to precipitation, but climatic factors alone have not been sufficient to predict the spatial‐temporal dynamics of the environment‐reservoir‐virus system. Using a series of mark‐recapture sampling sites located at the Mbaracayú Biosphere Reserve, an Atlantic Forest site in eastern Paraguay, we investigated the hypothesis that microhabitat might also influence the prevalence of Jaborá hantavirus within populations of its reservoir species, Akodon montensis. Seven trapping sessions were conducted during 2005‐2006 at four sites chosen to capture variable microhabitat conditions within the study site. Analysis of microhabitat preferences showed that A. montensis preferred areas with little forest overstory and denser vegetation cover on and near the ground. Moreover, there was a significant difference in the microhabitat occupied by antibody‐positive vs antibody‐negative rodents, indicating that microhabitats with greater overstory cover may promote transmission and maintenance of hantavirus in A. montensis.  相似文献   

5.
Differences in the patterns of microhabitat use by small mammals have been largely related to the coexistence process of the species. The present study analyses how the marsupial Marmosops incanus and the rodent Rhipidomys mastacalis use the microhabitat in a areas of arboreal restinga in the Brazilian north‐east. Through capture‐marking‐recapture, sampling was performed monthly from September 2017 to August 2018 using Sherman traps and pitfall. Six microhabitat variables were measured at all capture stations. The use of vertical strata (ground and understory) was compared using a chi‐square test, and associations of species abundances with microhabitat characteristics were explored using redundancy analysis. The results indicate that the species use the vertical strata at different frequencies, with R. mastacalis found exclusively in the understory and M. incanus found more in the understory than in the ground. The variation in the abundance of the species was associated with the density of the understory, with an increase in M. incanus abundance and a decrease in R. mastacalis. Differences in the patterns found for these species in other environments indicate plasticity in relation to the use of vertical strata and the approaches used suggest that the differential use of the arboreal stratum can be a facilitator in the process of coexistence in areas of restinga. Abstract in Portuguese is available with online material.  相似文献   

6.
Community Structure of In-Stream Bryophytes in English and Welsh Rivers   总被引:4,自引:2,他引:2  
Information on the distribution of bryophytes in mainland British rivers was collected as part of the Joint Nature Conservancy Council (JNCC) survey of in-stream macrophyte distribution between 1978 and 1997. A sub-set of sites (1604) containing the 50 most common bryophytes was analysed. The commonest of these 50 species were Fontinalis antipyretica and Rhynchostegium riparioides. The majority of species encountered are not considered to be truly aquatic. Detrended Correspondence Analysis of community structure revealed a continuum of variation in assemblages across sites rather than distinct groupings of bryophytes. Canonical Correspondence Analysis was used to analyse a sub-set of sites (625) for which water chemistry were available to test the influence of environmental variables on the distribution of bryophytes. The analysis suggested the strongest environmental gradient was the transition from lowland systems on chalk geology to steeply sloping, high altitude systems with resistant geology. Mapping CCA axis 1 scores on to a map of England and Wales suggested a geographic trend in bryophyte species distribution with community structure undergoing a transition from the upland regions and the western seaboard to the south east of England. Stepwise regression analysis confirmed the importance of the upland lowland trend, showing that substrate size, altitude of source, distance to source and altitude were important predictors of species richness (p < 0.0001, adjusted R2 = 0.30).  相似文献   

7.
《Biologia》2011,66(5):886-892
The longitudinal distribution patterns of fish species are affected by both natural and anthropogenic variables. The role of these factors on the formation of species assemblages is well documented in North America and Western Europe, but detailed information is lacking from Central and Eastern Europe, and the Carpathian region especially. Therefore, we examined the structure of fish assemblages in response to six key environmental parameters in a natural stream system (Udava stream basin, Slovakia). We used the indirect ordination method of gradient analysis (Detrended Correspondence Analysis, DCA) to analyse the species groups and their connections to the sampled sites and to recognize the strongest gradient of assemblage composition. Subsequently, we used the direct ordination method (Canonical Correspondence Analysis, CCA) to identify the strongest gradients in relation to selected variables. Two major gradients were identified that follow the upstream-downstream pattern of fish communities and three variables (distance from source, depth and site slope) are correlated with the first CCA axis (P < 0.05) and two variables (depth and vegetation cover) are correlated with the second CCA axis (P < 0.05). We assume that these factors influence the temperature and the amount of dissolved oxygen that can cause oxygen and temperature stress to intolerant species (e.g., salmonids). Based on these results, we assume that the economically important species, brown trout and grayling, are not native to the stream basin and this status is only the consequence of natural factors. Furthermore, the results suggest that the Udava stream offers favourable conditions for fish species distribution — a view supported by the high variability of particular variables within the proposed model.  相似文献   

8.
In this study, we explored the composition and assemblage structure of aquatic Heteroptera from 15 sampling sites along the Phong River, Thailand, during the rainy (July 2011), cool (December 2011) and hot (March–April 2012) seasons. A total of 8399 individuals, belonging to 54 species and 12 families of aquatic Heteroptera were recorded. The Kruskal–Wallis test indicated significant difference in total number of species and total number of individuals of aquatic Heteroptera among microhabitat types (P < 0.05). Stepwise multiple regression and canonical correspondence analysis (CCA) ordination show that characteristics of microhabitats including percentage of gravel, percentage of aquatic macrophytes covering the water surface and percentage of shading from riparian vegetation determine aquatic Heteroptera assemblage structures. From this study, microhabitats have more effect on aquatic Heteroptera than water pollution.  相似文献   

9.
J. Tong  P. Lei  J. Liu  D. Tian  X. Deng 《Plant biosystems》2016,150(3):412-419
Fine roots ( ≤ 2 mm diameter) are of great value when investigating belowground interactions among different plant species and soil nutrient cycling in forest ecosystems. However, fine root separation and species identification are labor-intensive and time-consuming processes. This study aimed to evaluate the aptitude of near-infrared reflectance spectroscopy (NIRS) in predicting tree species composition in fine root mixed samples. The coniferous species Cunninghamia lanceolata and Pinus massoniana, the deciduous species Alniphyllum fortunei and Liquidambar formosana, and the evergreen broadleaved species Cyclobalanopsis glauca represent the five subtropical tree species selected for this investigation. To obtain near-infrared reflectance spectral data, 20 samples taken in the field and 70 artificially mixed samples of the five species were produced after root samples were oven-dried and ground. Calibration was performed with partial least squares regression and leave-one-out cross-validation. Root mass proportions of the mixed samples showed good predictive capacity for C. lanceolata, P. massoniana, and C. glauca with low root mean square error of prediction ( < 6.82%) and high determination coefficients (R2>0.944). Predictions for A. fortunei and L. formosana were acceptable with R2>0.819. NIRS shows potential in predicting tree species composition with suitable accuracy.  相似文献   

10.
为了解干旱死亡叶片与自然凋落叶化学性质的差异性,对云南元江干热河谷5种植物(鞍叶羊蹄甲、白皮乌口树、灰毛浆果楝、细基丸和九里香)干旱死亡叶片和自然凋落叶化学性质进行比较分析。结果表明,干旱死亡叶片和自然凋落叶在碳和养分化学特性上表现出较大变异,且不同树种间存在极显著差异(P<0.001)。与自然凋落叶相比,干旱死亡叶片具有较高的可溶性碳、C/N比和Mg含量,而木质素、半纤维素和N含量则较低。干旱死亡叶片与自然凋落叶间的碳(R2=0.56,P<0.01)、纤维素(R2=0.52,P<0.01)、半纤维素(R2=0.85,P<0.001)、单宁(R2=0.99,P<0.001)、木质素/N(R2=0.60,P<0.01)、C/N(R2=0.64,P<0.001)和氮含量(R2=0.85,P<0.001)呈显著正相关。因此,可根据自然凋落叶化学性质预测未来极端干旱条件下干旱死亡叶片的化学性质。  相似文献   

11.
We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31, P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors. The U.S. Government’s right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

12.
A total of 23 ostracod taxa were found in 48 of 90 different water bodies (wetlands, springs, lakes, creeks, etc.) located at moderate to high elevation (530–1,095 m) in Diyarbakır province. The ecological tolerances and optimum values for environmental variables of 15 species were analyzed. Accordingly, maximum numbers of species were found between 700 and 800 m. Ostracod species and sampling sites along with seven environmental variables were ordinated with canonical correspondence analysis (CCA). The first axis of CCA explained 72% of the relationship between species and environmental variables. Of these, water temperature, redox potential and altitude were the most influential (P < 0.05) factors for species. Based on habitat similarities, an unweighted pair group mean average dendrogram divided species into four clustering groups. Among the species, Potamocypris arcuata, Candona neglecta and Psychrodromus fontinalis had the highest optimum estimates for altitude, whereas P. arcuata, Herpetocypris brevicaudata and P. fontinalis exhibited the highest tolerances to altitude. While most species revealed unique tolerances and optimum values for different ecological variables, species with cosmopolitan characteristics had wider ranges of ecological tolerances and distribution amid the variety of habitats along elevational gradients.  相似文献   

13.
The impressive diversity and unique distribution of primate taxa in Southeast Asia creates a region of interesting biogeography and evolutionary history that remains poorly understood. The three species in the Asian colobine genus Pygathrix (P. cinerea, P. nemaeus, and P. nigripes) appear to follow the unique distribution pattern, replacing one another along the north–south axis. However, the evolutionary history and taxonomic status within Pygathrix is currently debated. We constructed climate-based ecological niche models (ENMs) for the three species, using six environmental variables, to confirm that the bioclimate envelopes of Pygathrix cinerea, P. nemaeus, and P. nigripes follow the north–south gradient. We also used the ENMs to test whether the three species lack ecological exchangeability, meaning differentiation among factors that define the fundamental niche, and whether they exhibit ecological niche conservatism, or the tendency for related species to differ less ecologically than might be expected by the climate available to each species. Our ENMs for Pygathrix followed a north–south gradient as expected, with P. nemaeus extending from ca. 14°N to 21°N, P. cinerea from 14°N to 16°N, and P. nigripes from 11°N to 13.5°N. This study presents the first use of ENMs for doucs that yield significant predictive ability based only on climatic variables. The models are significantly different for all three species, supporting a lack of ecological exchangeability between them, as well as the recent elevation of Pygathrix cinerea to species status. Importantly, Pygathrix cinerea and P. nemaeus show evidence of ecological niche conservatism, which lends support to the occurrence of an allopatric speciation event. This result also suggests that the current overlapping distribution of Pygathrix cinerea and P. nemaeus is the result of secondary contact. The north–south distribution gradient, which exists in similar form among other groups of sister taxa in the region, may be attributed to a zoogeographic barrier, vicariance, or current or historical climatic shifts.  相似文献   

14.
Baraloto C  Goldberg DE 《Oecologia》2004,141(4):701-712
We conducted a rigorous test of tropical tree seedling microhabitat differentiation by examining microhabitat associations, survival and growth of established seedlings of ten tropical tree species representing a four-factor gradient in seed size. Eight microhabitat variables describing soil and light conditions were measured directly adjacent to each of 588 seedlings within twelve 10×100 m belt transects at Paracou, French Guiana, and at 264 reference points along the transects. From these measurements, we defined three principal components describing soil richness, soil softness and canopy openness. Six of ten species (in 9 of 30 total cases) were distributed non-randomly with respect to microhabitat along at least one principal component. However, few species demonstrated clear microhabitat specialization. All shifts in distribution relative to reference points were in the same direction (richer, softer soil). Furthermore, of 135 pairwise comparisons among the species, only 7 were significantly different. More than three-fourths of all seedlings (75.3%) survived over the 2-year monitoring period, but survival rates varied widely among species. In no case was the probability of survival influenced by any microhabitat parameter. Relative height growth rates for the seedlings over 2 years varied from –0.031 cm cm–1 year–1 (Dicorynia guianensis, Caesalpiniaceae) to 0.088 cm cm–1 year–1 (Virola michelii, Myristicaceae). In only 4 of 30 cases was height growth significantly associated with one of the three principal components. Because the conditions in this study were designed to maximize the chance of finding microhabitat differentiation among a group of species differing greatly in life history traits, the lack of microhabitat specialization it uncovered suggests that microhabitat partitioning among tropical tree species at the established seedling stage is unlikely to contribute greatly to coexistence among these species.  相似文献   

15.
Summary Among some species of Sonoran Desert rodents microhabitat differences are density dependent. I studied the differences in microhabitat use among four species of heteromyid rodents (Dipodomys merriami, Perognathus amplus, P. baileyi, and P. penicillatus) at low and at high population densities. Microhabitats are defined by the abundance and size distribution of desert shrubs. During a period of low population density the rodent species showed substantial microhabitat differentiation. Following a large increase in pocket mouse (Perognathus spp.) numbers differences in microhabitat use between species disappeared. The lack of microhabitat differentiation at high density is due to microhabitat shifts rather than an expansion in the number of microhabitats used. The shifts lead to increased similarity among species in microhabitat use. Microhabitat overlap is not constant but it is highly variable and sensitive to changes in rodent abundance.  相似文献   

16.
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response of sap flow of two dominant evergreen tree species, Eucalyptus crebra (a broadleaf) and Callitris glaucophylla (a needle leaved tree), in a remnant open woodland in eastern Australia. Sap flow data were collected using heat-pulse sensors installed in six trees of each species over a 2 year period which encompassed the tail-end of a widespread drought. Our objectives were to estimate the magnitude that a rainfall pulse had to exceed to increase tree water use (i.e., define the threshold response), and to determine how tree and environmental factors influenced the increase in tree water use following a rainfall pulse. We used data filtering techniques to isolate rainfall pulses, and analysed the resulting data with multivariate statistical analysis. We found that rainfall pulses less than 20 mm did not significantly increase tree water use (P > 0.05). Using partial regression analysis to hold all other variables constant, we determined that the size of the rain event (P < 0.05, R 2 = 0.59), antecedent soil moisture (P < 0.05, R 2 = 0.29), and tree size (DBH, cm, P < 0.05, R 2 = 0.15), all significantly affected the response to rainfall. Our results suggest that the conceptual Threshold-Delay model describing physiological responses to rainfall pulses could be modified to include these factors. We further conclude that modelling of stand water use over an annual cycle could be improved by incorporating the T-D behaviour of tree transpiration. Responsible Editor: Stephen S.O. Burgess  相似文献   

17.
John H. Harris 《Oecologia》1986,68(3):417-421
Summary I studied diet in relation to microhabitat use in two desert rodents:Microdipodops megacephalus, the dark kangaroo mouse, andPeromyscus maniculatus, the deer mouse. Contrary to expectation, both species ate primarily arthropods, which were most abundant near shrubs.Peromyscus used the area near shrubs, in contrast toMicrodipodops, which used open microhabitat. As a consequence, the diet ofPeromyscus was narrower and more concentrated on abundant prey types than that ofMicrodipodops. Thus microhabitat segregation, which is frequently reported for desert rodents, is related to a diet-breadth difference between these rodents. The use of open microhabitat and low density resources byMicrodipodops, when compared with the large bipedalDipodomys and small quadrupedalPerognatus, suggests that bipedal locomotion in desert rodents is related to use of open microhabitat, and that body size is related to density of food resources.  相似文献   

18.
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by chronic destruction of the bile ducts. A major unanswered question regarding the pathogenesis of PBC is the precise mechanisms of small bile duct injury. Emperipolesis is one of cell‐in‐cell structures that is a potential histological hallmark associated with chronic hepatitis B. This study aimed to clarify the pathogenesis and characteristics of emperipolesis in PBC liver injury. Sixty‐six PBC patients, diagnosed by liver biopsy combined with laboratory test, were divided into early‐stage PBC (stages I and II, n = 39) and late‐stage PBC (stages III and IV, n = 27). Emperipolesis was measured in liver sections stained with haematoxylin‐eosin. The expressions of CK19, CD3, CD4, CD8, CD20, Ki67 and apoptosis of BECs were evaluated by immunohistochemistry or immunofluorescence double labelling. Emperipolesis was observed in 62.1% of patients with PBC, and BECs were predominantly host cells. The number of infiltrating CD3+ and CD8+ T cells correlated with the advancement of emperipolesis (R2 = 0.318, P < .001; R2 = 0.060, P < .05). The cell numbers of TUNEL‐positive BECs and double staining for CK19 and Ki67 showed a significant positive correlation with emperipolesis degree (R2 = 0.236, P < .001; R2 = 0.267, P < .001). We conclude that emperipolesis mediated by CD8+ T cells appears to be relevant to apoptosis of BEC and thus may aggravate the further injury of interlobular bile ducts.  相似文献   

19.
Abstract The Atlantic Rainforest originally covered much of the Brazilian coast and is now reduced to approximately only 7% of its original area. Data on abundance distribution and microhabitat characteristics of anuran amphibians living on the forest floor leaf litter in the Atlantic Rainforest are scarce. In this study, we analysed the effect of litter depth and structure on the abundance and species richness of leaf‐litter frogs in an area of Atlantic Rainforest at Ilha Grande, Rio de Janeiro State, south‐eastern Brazil. We performed monthly samples (nocturnal and diurnal) from August 1996 to October 1997 using small (2 m × 1 m) plots. We sampled 234 plots, totalling 468 m2 of forest leaf litter. We estimated leaf‐litter depth and the proportion of leaves in the plot and tested their effect on the total abundance of frogs and species richness using multiple regression analysis. We found 185 frogs from eight species: Brachycephalus (=Psyllophryne) didactylus (Izecksohn, 1971) (Brachycephalidae), Dendrophryniscus brevipollicatus Jiménez de la Espada 1871 (Bufonidae), Adenomera marmorata Steindachner 1867, Eleutherodactylus parvus (Girard 1853), Eleutherodactylus guentheri (Steindachner 1864), Eleutherodactylus binotatus (Spix 1824) and Zachaenus parvulus (Girard 1853) (Leptodactylidae), and Chiasmocleis sp. (Microhylidae). Brachycephalus didactylus was the most abundant species, with 91 individuals, whereas Dendrophryniscus brevipollicatus was the rarest, with two individuals. Mean litter depth and the proportion of leaves in the leaf litter were significantly related to frog abundance (R2 = 0.17; F2,107 = 10.779; P = 0.0001) and species richness (R2 = 0.11; F2,107 = 6.375; P = 0.002) indicating that microhabitat characteristics may affect local distribution and abundance of frogs in the forest floor.  相似文献   

20.
Parasites are considered to play an important role in the regulation of wild animal populations. We investigated parasite burden of gastrointestinal nematodes and body condition in specialist and generalist small mammal species in secondary forest fragments in the highly endangered coastal Atlantic Forest. We hypothesized that body condition decreases with increasing parasite load and that parasite burden increases with increasing fragmentation in specialist species but not in generalist species as a consequence of differing responses to fragmentation effects. Investigated species were Akodon montensis, Oligoryzomys nigripes, and Delomys sublineatus (rodents) and the marsupials Marmosops incanus and Gracilinanus microtarsus. Prevalence of parasites was high in all species except for the arboreal G. microtarsus, presumably because of decreased infection probability. No correlation was found between body condition and parasite load in any of the species. Contrary to our expectations, body condition of the specialists D. sublineatus and M. incanus increased in both species with increasing fragmentation. In D. sublineatus, parasite burden increased and body condition decreased in fragments with relatively high density probably due to increased contact rates and facilitation of infection with nematodes. In all generalist species, low or no correlation between parasite burden and fragmentation was detected, suggesting little effect of fragmentation on population health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号