首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Humus profiles underneath the canopy of dominant tree species in two secondary semi-evergreen forest sites in Grande-Terre (Guadeloupe) were analysed with a micromorphological method. In the vertisol of a tree plantation, the humus formed was rather similar under all tree species being an eumull and essentially due to the activity of the endoanecic earthworm Polypheretima elongata. In a natural secondary forest located on a steep slope and associated with a rendzina soil (without endoanecic earthworms), the humus forms were described at lower, mid- and upper slope. In this forest, two particular humus forms were observed. At the middle slope, underneath the canopy of Pisonia subcordata L. that produces nitrogen-rich litter, a calcareous amphimull, characterised by an OH horizon made of millipede faecal pellets, was formed. In the upper slope, underneath the canopy of Bursera simaruba (L.) Sarg. that produces a litter rich in resins and aromatic compounds that are poorly consumed by soil animals, a dysmull with a thick root mat (OFRh horizon) developed. Other humus forms were intermediate. The formation of these humus forms is discussed.  相似文献   

2.
Tree species can influence biogeochemistry through variation in the quantity and chemistry of their litter, and associated impacts on the soil heterotrophic community. However, the role that different plant traits play in these processes is not well understood, nor is it clear whether species effects on soils largely reflect a gymnosperm vs. angiosperm contrast. Using a replicated, long‐term monoculture plot experiment, we examined variation in soils among 14 gymnosperm and angiosperm tree species 30 years after plot establishment, and assessed the role of litter chemistry vis‐à‐vis such variation. Differences in litter calcium concentrations among tree species resulted in profound changes in soil acidity and fertility that were similar within and among tree groups. Tree species rich in calcium were associated with increased native earthworm abundance and diversity, as well as increased soil pH, exchangeable calcium, per cent base saturation and forest floor turnover rate.  相似文献   

3.
4.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

5.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

6.
The canopy is host to a large percentage of the flora and fauna in tropical wet forests and is distinct from the forest floor in plant richness, soil type and microclimate. In this study, we examined the influence of tree species and season on soil nutrient cycling processes in canopy soils of four tree species common to Costa Rican wet forests. We also compared the canopy soils to the associated forest floor mineral soils. Both tree species and season had strong effects on canopy soil nutrients and processes. Canopy soils from trees with high litter lignin concentrations had higher net N-mineralization rates and higher dissolved inorganic N concentrations than those with low lignin concentrations. During the dry season, net N-immobilization occurred and dissolved organic and inorganic N and available P concentrations were significantly higher than during the wet season. Overall, canopy soils had higher N levels and higher fungi + bacteria richness than forest floor mineral soils. The differences in canopy soil properties observed among tree species indicates that these species have distinct N cycles that reflect differences in both soil origin and biological controls.  相似文献   

7.
Tropical forests accommodate rich species diversity, particularly among insects. Habitat heterogeneity along the vertical gradient extending from the forest understorey to the tree canopy influences diversity. The vertical distribution of forest insects is poorly understood across Africa, most especially eastern Africa. Food‐baited traps were used to study the vertical stratification of adult fruit‐feeding nymphalid butterflies in Mtai Forest Reserve, north‐eastern Tanzania. Traps were located in the forest canopy and understorey. A total of 277 individuals of 24 species were captured. Species composition differed by trap locations: 33% of the species captured were found in both the canopy and understorey strata; however, significantly more species were captured in the understorey (54%) than canopy (13%). Males were significantly more abundant than females and captured in both strata. A greater proportion of females were captured in the understorey than the canopy. The time of day affected capture rates, with more individuals caught in the afternoon; however, there was no association between the time period and the sex of individuals captured in canopy versus understorey locations. Understanding how the sexes of butterflies vary in understorey versus canopy offers new biological insights into the vertical stratification of insects.  相似文献   

8.
A change in land use from agriculture to forest generally increases soil acidity. However, it remains unclear to what extent plant traits can enhance or mitigate soil acidification caused by atmospheric deposition. Soil acidification is detrimental for the survival of many species. An in‐depth understanding of tree species‐specific effects on soil acidification is therefore crucial, particularly in view of the predicted global increases in acidifying nitrogen (N) deposition. Here, we report soil acidification rates in a chronosequence of broadleaved deciduous forests planted on former arable land in Belgium. This region receives one of the highest loads of potentially acidifying atmospheric deposition in Europe, which allowed us to study a ‘worst case scenario’. We show that less than four decades of forest development caused significant soil acidification. Atmospheric deposition undoubtedly and unequivocally drives postagricultural forests towards more acidic conditions, but the rate of soil acidification is also determined by the tree species‐specific leaf litter quality and litter decomposition rates. We propose that the intrinsic differences in leaf litter quality among tree species create fundamentally different nutrient cycles within the ecosystem, both directly through the chemical composition of the litter and indirectly through its effects on the size and composition of earthworm communities. Poor leaf litter quality contributes to the absence of a burrowing earthworm community, which retards leaf litter decomposition and, consequently, results in forest‐floor build‐up and soil acidification. Also nutrient uptake and N2 fixation are causing soil acidification, but were found to be less important. Our results highlight the fact that tree species‐specific traits significantly influence the magnitude of human pollution‐induced soil acidification.  相似文献   

9.
10.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

11.
We studied species richness, composition and vertical distribution of epiphytic bryophytes in submontane rainforest of Central Sulawesi. Bryophytes were sampled on eight canopy trees and on eight trees in the forest understorey. Microclimate was measured at trunk bases and at crown bases. The total recorded number of 146 epiphytic bryophyte species is among the highest ever reported for tropical forests and underlines the importance of the Malesian region as a global biodiversity hotspot. Species composition differed significantly between understorey trees and canopy tree trunks on the one hand, and the forest canopy on the other. Fourty-five percent of the bryophyte species were restricted to canopy tree crowns, 12% to the understorey. Dendroid and fan-like species mainly occurred in the forest understorey whereas tufts were most species rich in the tree crowns. The findings reflect the different microclimatic regimes and substrates found in the understorey and in the forest canopy. The results indicate that assessments of the bryophyte diversity of tropical forests are inadequate when understorey trees and tree crowns are excluded.  相似文献   

12.
Seedling emergence and establishment are fragile processes that determine the direction and structure of forest succession and regeneration. However, seedling emergence and establishment are easily affected by biotic and abiotic (environmental) factors. A dense and expanding understory of dwarf bamboo is one such important factor that can seriously hinder the seedling regeneration. We conducted a field experiment to investigate the emergence and establishment of canopy tree seedlings under artificially controlled densities of dwarf bamboo. We found that understory dwarf bamboo obstructed seedling emergence but reduced the death of seedlings. Although understory dwarf bamboo reduced the median retention time of seedlings, dense bamboo increased the mean survival time of seedlings. Our results suggest that understory dwarf bamboo has multiple selectivities for tree seedling emergence and establishment: high‐density dwarf bamboo was beneficial to evergreen species but lower‐density of bamboo was conducive to the survival of deciduous species, it means the dwarf bamboo potentially alters successional trajectories of forest communities. Path analysis revealed that the most important factors affecting tree seedling emergence and death were the abundance of seeds in the seed bank and the density of emerged seedlings, and that the soil temperature promoted seedling emergence but increased seedling death, the thickness of litter limited seedling emergence, and the leaf area index of the bamboo canopy limited seedling death. The present study suggests that dwarf bamboo can directly alter the microenvironment, significantly reducing light levels and soil temperature but increasing the thickness of litter and soil humus, thereby indirectly impacting the regeneration of tree seedlings. Our results indicate that various factors affected seedling emergence, and there were complex indirect relationships among these factors. In general, biological factors had a stronger influence on tree seedling regeneration than environmental factors.  相似文献   

13.
Question: How do broadleaf tree species affect humus characteristics, herb layer composition and species diversity through their leaf litter quality and canopy structure? Location: Mixed broadleaf forests in Brandenburg, NE Germany. Methods: We studied the herb and tree layer composition in 129 undisturbed stands using a 10‐degree cover‐abundance and percentage scale, respectively. The main floristic gradients were extracted by non‐metric multidimensional scaling. Effects of tree species on the herb layer were analysed with partial Spearman rank correlation. We assessed affinities for specific tree species using indicator species analysis. Results: Both beech and oak influenced herb layer composition mainly through their litter quality, which resulted in deep Ol and Of horizons, respectively. The less dense canopy of oak, in contrast to the dense beech canopy, enhanced species diversity in favour of indifferent herb species (species not closely tied to forests). Lime was correlated with a distinct floristic gradient, but a direct effect on the herb layer cannot be proven with the available data. Effects of hornbeam were less pronounced. Conclusions: The relationship between the tree and herb layer must be partly attributed to pH differences. However, tree species effects on humus characteristics and on light flux to the ground were largely responsible as well. The results suggest that tree species can influence herb layer composition and diversity, but the missing correlation with lime and hornbeam raise questions requiring further detailed investigation.  相似文献   

14.
Plants are connected to habitats by functional traits which are filtered by environmental gradients. Since tree species composition in the forest canopy can influence ecosystem processes by changing resource availability, litter accumulation, and soil nutrient content, we hypothesised that non-native invasive trees can establish new environmental filters on the understorey communities. In the hardwood floodplain forests in Northern Italy, the invasive trees Robinia pseudoacacia L. and Prunus serotina Ehrh. are the dominant canopy species. We used trait data assembled from databases and iterative RLQ analysis to identify a parsimonious set of functional traits responding to environmental variables (soil, light availability, disturbance, and stand structure) and the dominant native and invasive canopy species. Then, RLQ and fourth-corner analysis was conducted to investigate the joint structure between macro-environmental variables and species traits and functional groups were identified. The trait composition of the herb-layer was significantly related to the main environmental gradients and the presence of the invaders in the canopy showed significant relationships with several traits. In particular, the presence of P. serotina may mitigate or even erase the effect of disturbances, maintaining a stable forest microclimate and thus favouring ‘true’ forest species, while R. pseudoacacia may slow down forest succession and regeneration by establishing new stable associations with a graminoid-dominated understorey. The impact of the two invasive trees on herb layer composition appears to differ, indicating that different management and control strategies may be needed.  相似文献   

15.
Questions: What are the most likely environmental drivers for compositional herb layer changes as indicated by trait differences between winner and loser species? Location: Weser‐Elbe region (NW Germany). Methods: We resurveyed the herb layer communities of ancient forest patches on base‐rich sites of 175 semi‐permanent plots. Species traits were tested for their ability to discriminate between winner and loser species using logistic regression analyses and deviance partitioning. Results: Of 115 species tested, 31 were identified as winner species and 30 as loser species. Winner species had higher seed longevity, flowered later in the season and more often had an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, were more susceptible to deer browsing and had a performance optimum at higher soil pH compared to winner species. The loser species also represented several ancient forest and threatened species. Deviance partitioning indicated that local drivers (i.e. disturbance due to forest management) were primarily responsible for the species shifts, while regional drivers (i.e. browsing pressure and acidification from atmospheric deposition) and global drivers (i.e. climate warming) had moderate effects. There was no evidence that canopy closure, drainage or eutrophication contributed to herb layer changes. Conclusions: The relative importance of the different drivers as indicated by the winner and loser species differs from that found in previous long‐term studies. Relating species traits to species performance is a valuable tool that provides insight into the environmental drivers that are most likely responsible for herb layer changes.  相似文献   

16.
We studied the effects of wear on the understorey vegetation and the soil microbial community structure (phospholipid fatty acid pattern) in urban forests of medium fertility and of varying size in the capital area of Finland, Helsinki. These forests are important sites of recreation for a large number of residents. Consequently, the cover of understorey vegetation is affected by trampling. In the study, the cover of ground layer plant species (mosses) was found to be lower than in rural reference areas. We found that microbial activity, measured as soil respiration, was lower in the most worn forest patches as compared to less worn sites. Further, the microbial community structure of the humus layer changed due to the effects of wear. By comparing the PLFA pattern in trampled and un-trampled forest patches, we found out that the most important factors affecting the structure of microbial community were the dominant tree species (the proportion of broad-leaved tree species in relation to conifers), and the composition of the understorey vegetation. Thus, we could conclude that wear affects the microbial community structure through changes in vegetation, in the quality of litter shed, and through resultant changes in the humus pH, rather than only through soil compaction.  相似文献   

17.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

18.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

19.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

20.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号