首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Monte desert of Argentina open woodlands of several species of Prosopis occur in areas with accessible underground water. The great latitudinal extent of the Monte (26–43°S) exhibits strong climatic gradients involving temperature, rainfall seasonality, and wind regime. Prosopis woodlands have been a source of subsistence for human communities for several centuries and continue to be exploited by the local inhabitants. The “mining” of this resource has led to severe desertification and consequent impoverishment of the local people. In order to suggest strategies for the better management and recuperation of these woodlands we studied the population structure and productivity of Prosopis flexuosa from multiple plots at Pipanaco (27°58′S), Telteca (32°20′S), and Ñacuñán (34°03′S). For each plot we measured the density of P. flexuosa trees, number of stems, basal diameter (DAB), height and canopy diameter of each tree. Tree ring data were used to determine the growth rates, annual wood production and biological rotation age for each area. The ecological structure of the woodlands differs between the three sites. Along this north–south transect, there is a decrease in adult tree density, mean basal diameter, mean tree height, canopy cover, productivity and total wood biomass. Consequently, the potential sustainable use of these woodlands varies. Only the northern, Pipanaco, woodlands have the potential for lumber production. In contrast, the short, multi-stem and low-productivity trees in the Telteca and Ñacuñán areas can only sustain a combination of local firewood production and activities such as extensive grazing by livestock. The present, uniform regulations for harvesting wood in these areas must be changed to acknowledge these differences in order to optimize wood production in, and conservation of, these woodlands.  相似文献   

2.
水盐梯度下荒漠植物多样性格局及其与土壤环境的关系   总被引:2,自引:0,他引:2  
张雪妮  杨晓东  吕光辉 《生态学报》2016,36(11):3206-3215
植物多样性格局作为生物多样性维持的一个重要方面可揭示群落构建的信息,反映物种对环境的适应性。结合样带调查和实验分析的方法,研究新疆艾比湖湿地自然保护区内水盐梯度下荒漠植物多样性格局及其与土壤环境因子间关系。结果表明:(1)高、低水盐样地(SW1,SW2)土壤容积含水量(SVWC)和电导率(EC)分别为16.65%和12.02 m S/cm及2.63%和1.91m S/cm,水盐变化主要影响草本和部分灌木群落的植物组成;(2)高水盐生境下植物群落无明显趋势性分布,低水盐生境下植物种依水盐和营养元素呈区域性分布。(3)高水盐生境下荒漠植物的多度分布呈对数正态模型,低水盐条件下符合Zipf模型,多度分布的变化反映了群落组成结构的水盐梯度响应;(4)SW1样地多样性总体显著高于SW2样地,土壤p H、SVWC和硫(S)对植物多样性有不同程度的极显著影响。综上可知,荒漠植物分布及多样性格局与土壤环境间关系呈一定的水盐梯度响应规律,本研究可为该地区植被恢复和土壤盐渍化治理提供科学依据。  相似文献   

3.
Soil salinity and drought compromise water uptake and lead toosmotic adjustment in xero-halophyte plant species. These importantenvironmental constraints may also have specific effects onplant physiology. Stress-induced accumulation of osmocompatiblesolutes was analysed in two Tunisian populations of the Mediteraneanshrub Atriplex halimus L.—plants originating from a salt-affectedcoastal site (Monastir) or from a non-saline semi-arid area(Sbikha)—were exposed to nutrient solution containingeither low (40 mM) or high (160 mM) doses of NaCl or 15% polyethyleneglycol. The low NaCl dose stimulated plant growth in both populations.Plants from Monastir were more resistant to high salinity andexhibited a greater ability to produce glycinebetaine in responseto salt stress. Conversely, plants from Sbikha were more resistantto water stress and displayed a higher rate of proline accumulation.Proline accumulated as early as 24 h after stress impositionand such accumulation was reversible. By contrast, glycinebetaineconcentration culminated after 10 d of stress and did not decreaseafter the stress relief. The highest salt resistance of Monastirplants was not due to a lower rate of Na+ absorption; plantsfrom this population exhibited a higher stomatal conductanceand a prodigal water-use strategy leading to lower water-useefficiency than plants from Sbikha. Exogenous application ofproline (1 mM) improved the level of drought resistance in Monastirplants through a decrease in oxidative stress quantified bythe malondialdehyde concentration, while the exogenous applicationof glycinebetaine improved the salinity resistance of Sbikhaplants through a positive effect on photosystem II efficiency. Key words: Atriplex halimus, glycinebetaine, halophyte, NaCl, osmotic adjustment, proline, salinity, water stress  相似文献   

4.
土壤含水量对麻疯树幼苗生长及其生理生化特征的影响   总被引:5,自引:0,他引:5  
焦娟玉  陈珂  尹春英 《生态学报》2010,30(16):4460-4466
以麻疯树(Jatropha curcas L.)1年生盆栽幼苗为材料,通过设置3个土壤水分(分别为80%、50%和30%田间持水量(FC))处理,研究土壤含水量对麻疯树幼苗生长及生理生化指标的影响,探讨麻疯树的水分适应性。结果表明:随土壤含水量的降低,麻疯树的株高、生物量等均呈下降趋势,根重比、根冠比和比叶面积无显著变化;蒸腾速率和气孔导度显著降低,净光合速率和PSII的光能转换效率无明显变化;叶片色素含量显著升高。在80%FC下,丙二醛和过氧化氢含量、可溶性糖和游离脯氨酸含量、超氧化物歧化酶活性和抗坏血酸含量均呈现最大值。在本实验条件下:麻疯树作为一种抗旱性较强的树种,30%FC没有对其造成干旱胁迫;而从生理生化代谢方面看,80%FC不能为麻疯树生长提供最适宜的条件,主要体现在体内自由基积累、膜脂过氧化程度加重以及叶绿体色素含量的降低,但体内抗氧化防御系统的积极防御和渗透调节物质含量的增加缓解了水分过多对麻疯树造成的伤害,从而没有对净光合速率造成影响。因此,在当地土壤养分状况下,以30%-50%FC的土壤含水量栽培,更有利于麻疯树的生长。  相似文献   

5.
曹昀  王国祥 《生态学报》2007,27(5):1748-1755
应用盆栽试验方法,采用完全随机试验设计,研究了菖蒲在不同土壤水分含量下的萌发和幼苗生长。试验共设6个处理,处理时间为60d。结果表明:(1)水分亏缺对菖蒲萌发和幼苗有不同程度的影响,在持续干旱60d条件下,菖蒲幼苗的萌发率仅为32.5%,为正常水分条件下的1/3,幼苗的平均高度为19.0cm,是正常水分条件下的1/3左右;(2)菖蒲幼苗叶片长度、宽度和基茎随土壤水分含量降低而减小,叶片数量与叶片面积也随土壤水分含量降低而减小,叶片含水率各试验组无明显差异;(3)在试验的20、40、60d,各试验组的根、茎、叶及总生物量都比对照组(CK)有不同程度的降低,并随试验时间的延长,各水分含量条件下的生物量差别增大,在不同土壤水分条件下,根、茎和叶生物量增量均表现为茎的最多,叶的次之,根的最少,叶、茎、根生物量比例平均为1:1.59:0.82;(4)菖蒲幼苗叶片的叶绿素a、b随土壤水分含量减少而下降,叶绿素a/b随土壤水分含量减少而下降而升高,类胡萝卜素(Car)含量随土壤水分含量减少而下降;(5)Fv/Fm、qP随土壤水分含量降低而下降,重度干旱对菖蒲幼苗光合系统PSⅡ的最大量子产量影响显著,菖蒲幼苗在重度干旱条件下30、45、60d的Fv/Fm分别为0.800、0.796、0.787,分别比对照降低5.0%、4.7%和6.2%;菖蒲幼苗在重度干旱条件下30、45、60d的qN分别为0.270、0.259和0.200,分别是对照的6.75、3.92、2.78倍,可见干旱条件会导致菖蒲幼苗以热的形式耗散掉的光能部分增加,有效保护了菖蒲叶片PSⅡ系统,但持续干旱(60d)导致qN降低,菖蒲叶片PSⅡ系统受到不同程度的破坏;干旱胁迫还对菖蒲植株的光响应曲线具有较大的影响,使最大ETR降低。  相似文献   

6.
We examined the above- and below-ground responses of seedlings of the woody shrub Prosopis glandulosa to the spatial heterogeneity of soil nutrients within the root zone. We performed a microcosm experiment where seedlings were grown with different combinations of nutrients [nitrogen (N), phosphorus (P), and both combined (NP)] and under different levels of nutrient heterogeneity (nutrients supplied as patches located in the bottom and/or upper portion of rooting zone versus homogeneous distribution). Seedling morphology and biomass did not show a strong response to changes in nutrient ion or spatial heterogeneity. Height, number of leaves, and specific leaf area did not vary significantly between treatments. The number of leaves, foliar biomass, stem biomass and biomass allocation to stems of seedlings showed more responsiveness to the addition of N and NP than to the addition of P. The spatial heterogeneity of nutrients affected the diameter, root biomass and leaf N content. Seedlings had higher diameter and root biomass when the nutrients were homogeneously distributed as compared to their placement as patches in the bottom of the microcosms. Their leaf N concentration increased in those treatments where the nutrient patch was located in the lower half as compared to the upper half of the microcosms. Root foraging responses to nutrient patches varied with their location. Significant root proliferation was observed when patches of N, P and NP were located in the upper portion of the rooting zone; when they were located in the lower portion such a response was observed only for P. Despite our findings that Prosopis seedlings have a low overall responsiveness to small-scale vertical differences in soil nutrient heterogeneity, our results suggest that these differences may modify the growth dynamics of the secondary roots of this ecologically important dryland species during the early stages of its development.  相似文献   

7.
The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial grasses. The replacement of grasses by shrubs requires an establishment phase where small shrubs must compete directly with similar-sized grass plants. This is followed by a phase in which large, established shrubs sequester nutrients and water within their biomass and alter soil resources directly under their canopy, creating “islands” of fertility. We hypothesized that these two phases were associated with shrubs having different physiological response capacities related to their age or size and the resource structure of the environment. As a corollary, we hypothesized that responses of small shrubs would be more tightly coupled to variation in soil moisture availability compared to large shrubs. To test these hypotheses, we studied gas exchange and water relations of small (establishing) and large (established) shrubs growing in the Jornada del Muerto as a function of varying soil moisture during the season. The small shrubs had greater net assimilation, stomatal conductance, transpiration, and xylem water potential than large shrubs following high summer rainfall in July, and highest seasonal soil moisture at 0.3 m. High rates of carbon assimilation and water use would be an advantage for small shrubs competing with grasses when shallow soil moisture was plentiful. Large shrubs had greater net assimilation and water-use efficiency, and lower xylem water potential than small shrubs following a dry period in September, when soil moisture at 0.3 m was lowest. Low xylem water potentials and high water-use efficiency would allow large shrubs to continue acquiring and conserving water as soil moisture is depleted. Although the study provides evidence of differences in physiological responses of different-sized shrubs, there was not support for the hypothesis that small shrubs are more closely coupled to variation in soil moisture availability than large shrubs. Small shrubs may actually be less coupled to soil moisture than large shrubs, and thus avoid conditions when continued transpiration could not be matched by equivalent water uptake.  相似文献   

8.
Salt-resistant rice cultivars Nona Bokra and IR 4630 exposed at the seedling stage during one or two weeks to 0, 20, 30, 40 or 50 mM NaCl accumulated less Na, Cl, Zn and proline and more K at root and shoot levels than salt-sensitive I Kong Pao and IR 31785. Aiwu, a moderately resistant genotype, exhibited an intermediate behaviour. P transport from root to shoot was inhibited in the most sensitive cultivar IR 31785. Accumulation of Na and Cl and decrease in K content at the shoot level were restricted to the oldest leaves in salt-resistant genotypes while proline accumulated in the youngest leaves in all cultivars. In the presence of NaCl, the osmotic potentials of the roots and of the oldest and youngest leaves were lower in the salt-resistant than in the salt-sensitive genotypes, differences among genotypes increasing with stress intensity. Proline did not appear to be involved in osmotic adjustment in salt-stressed rice plants and the significance of its accumulation is discussed in relation to salinity resistance.Abbreviations cv(s). cultivar(s) - EC electrical conductivity - IKP I Kong Pao - J rate of ion transport - MCW methanol-chloroform-water - PAR photon flux density - Pc partitioning coefficient - RGR mean relative growth rate - RI resistance index - s osmotic potential  相似文献   

9.
More than 2 M ha of remnant vegetation in Australia is predicted to be at risk from shallow water tables by 2050. Currently, vegetation is considered to be at risk where the water table is predicted to be less than 2 m below the soil surface, yet casual observation of areas affected by secondary salinity in the Western Australian wheatbelt has suggested that small differences in elevation (< 0.5 m) are important in determining plant health. In this study, we investigated how small changes in elevation (and hence depth to the water table) affected soil Cl concentrations and water contents, and whether small changes in elevation were associated with major changes in tree health in two remnants of Eucalyptus wandoo Blakely woodland with secondary salinity. At one site there were strong dissimilarities between soil samples collected above or below relative elevations of 0.5 m in areas with a shallow (0.3 m deep in September 2001) and saline water table. This was reflected in almost complete tree mortality at relative elevations below 0.5 m. However, low rainfall in 2001 meant that it was unlikely that current soil conditions had caused tree death. When water table data for 1999 was overlaid over plots of tree health and transect topography, high levels of tree mortality corresponded with areas where the water table was at or above the ground surface. At the other site, there was no clear relationship between elevation, soil characteristics and tree health. Localised variation in abiotic conditions and ecosystem processes at a fine-scale may buffer, to some extent, the spatial impact of soil salinity and waterlogging in remnant vegetation. Collapses in tree health at some sites are likely to be related to extreme and episodic events, which we may have limited ability to predict.  相似文献   

10.
Olive solid waste (OSW) is a toxic by-product of olive oil production. Disposal of OSW is a major problem in many Mediterranean countries leading to increased interest in its potential as an organic fertiliser. Relatively little is known regarding the impact of augmentation with OSW and olive solid waste compost (OSWC) on soil hydraulic properties. The effect of OSW and OSWC on the hydraulic characteristics of common agricultural soils with high sand but very different silt and clay contents was analysed. Increased organic inputs induced reductions in soil bulk density and increases in air capacity, hydraulic conductivity and the water content available for plant growth (AWC) in the Sandy Clay Loam (SCL) soil. Similar patterns were observed in Loamy Sand (LS) soil augmented with OSW, but OSWC caused reductions in hydraulic conductivity, air capacity and AWC. Nonetheless, over longer timescales OSWC may benefit the hydraulic properties of loamy sand soils as the compost becomes fully incorporated within the soil structure. Augmentation with organic olive waste induced the hydraulic parameters of the sandy clay loam soil to become identical to those loamy sand (LS) with a higher available water capacity; suggesting that soil augmentation with OSW and OSWC may be an effective tool in remediating and improving degraded or organic poor soils. In terms of the improvement of hydraulic parameters, application rates of 6–8% OSW/OSWC were most beneficial for both soil types.  相似文献   

11.
1. In order to investigate the factors influencing the establishment of seedlings in permanent grassland, the influence of soil moisture and nitrogen fertilization on competition between established plants of Lolium perenne and seedlings of Phleum pratense or Trifolium pratense was studied in two experiments under greenhouse conditions using the 'split-box'-technique.
2. There was no difference in the production of plant dry matter of P. pratense or T. pratense between 30% volumetric soil water content (−0·005 MPa) and 22% (−0·04 MPa), but 15% soil moisture (−0·33 MPa) reduced plant growth. L. perenne yields were linearly reduced by reduced soil moisture content.
3. Shoot competition from L. perenne reduced the plant dry matter yield of P. pratense and T. pratense more than did root competition in these experiments. When shoot competition was present, differences between moisture contents were not detected, indicating that light was probably the limiting resource under such conditions. No significant interaction between root competition and soil moisture was observed for plant weight.
4. Root competition was not prevented even though sufficient water and nitrogen were supplied. This indicated either that some other growth factor was limiting or the plants competed for resources at the root hair level even though sufficient resources were supplied at the pot or field scale. Therefore, in the situation of direct drilling of species during grassland renovation, it may be difficult to alleviate competition by adequate provision of water and nitrogen.  相似文献   

12.
Anger  Klaus  Riesebeck  Kim  P&#;schel  Cornelia 《Hydrobiologia》2000,426(1):161-168
The neotropical crab Armases miersii (Rathbun, 1897) breeds in supratidal rock pools, where great salinity variations occur. In laboratory experiments, all larval stages and the first juveniles were reared at six different salinities (5–55 PSU, intervals of 10 PSU). In five series of experiments, exposure to these conditions began either from hatching (Zoea I) or from the onset of successively later stages (Zoea II, III, Megalopa, Crab I). Growth was measured in terms of dry weight, carbon, nitrogen and hydrogen content. At osmotically extreme conditions (5 and 55 PSU, resp.), all stages showed minimum biomass accumulation; this was consistent with maximum mortality and longest duration of development (data presented in a separate paper). Successively later exposure to these salinities tended to reduce these effects. Lowest mortality and shortest time of development occurred generally at 15–25 PSU, indicating an optimum at moderately reduced salinities. This response pattern, however, was not congruent with that observed in growth. Biomass accumulation was initially maximum within a wide range of salinities (15–45 PSU), but in the Zoea II and III stages, this range tended to narrow and to shift towards higher salinities (35–45 PSU). These trends reversed in the Megalopa and Crab I, where maximum growth occurred again in a wider range and at lower salinities (15–35 PSU). The reduction of zoeal growth in moderately dilute media (15–25 PSU), which were optimal for survival and development, is interpreted as an energetic cost of hyper-osmoregulation, which begins already at hatching. Five PSU caused hypo-osmotic stress, exceeding in the long term the larval capacity for hyper-regulation. Poor zoeal survival and growth at 55 PSU are interpreted as effects of hyper-osmotic stress. In the Megalopa and Crab I, reduced growth at salinities 35 PSU may reflect the energetic costs of hypo-osmoreguation beginning in these stages. Our data suggest that the physiological adaptations of larval and early juvenile A. miersii allowing for survival and development in a physically harsh and unpredictable habitat imply a trade-off with reduced growth, due to energetic costs of osmoregulation.  相似文献   

13.
The response of potato cultivars to water salinity was studied under field conditions in sandy loessial soil in the arid desert of Southern Israel. The potatoes were drip-irrigated with water of three different salinities: water commonly used for irrigation (1.0–1.4 dS m-1); saline water from a local well (6.1–6.9 dS m-1); and a mixture of the two (3.84.3 dS m-1). Salinity retarded plant emergence, enhanced haulm senescence and reduced growth of both haulms and tubers. Increasing the salinity progressively reduced tuber yields. Application of the saline water well after plant establishment (Expt A) decreased tuber yields by 615% and 22–31% in the intermediate and the high salinities, respectively. When irrigation with saline water was started soon after planting (Expt B), tuber yields were decreased by 0–17% and 21–79% in the intermediate and the high salinities, respectively. When the tubers emerged in salinised soil, tuber yields were decreased by 21–54% and 42–59% in the intermediate and the high salinities, respectively. A differential response of various cultivars to salinity was observed. None of the potato cultivars or clones exhibited exceptional tolerance to severe salinity. The earlier maturing cvs Atica and Désirée were the least susceptible to the moderate salinity imposed throughout the entire growing season; however, no association was noted between maturation time and the response to salinity.  相似文献   

14.
为了解沙埋对沙生植物生长的影响及其生理响应特征, 比较不同沙生植物耐沙埋能力及其机制, 2010年在内蒙古科尔沁沙地研究了不同深度沙埋下沙蓬(Agriophyllum squarrosum)和盐蒿(Artemisia halodendron)幼苗的存活率、株高等生长特性及其渗透调节物质含量, 保护酶活性和膜透性的变化, 得到以下结果: 沙蓬和盐蒿幼苗均具有较强的耐沙埋能力, 其中沙蓬幼苗最大耐沙埋深度超过幼苗10 cm, 盐蒿幼苗最大耐沙埋深度超过其株高8 cm; 随着沙埋深度增加, 沙蓬和盐蒿幼苗的存活率和株高均显著下降, 沙蓬的下降幅度显著小于盐蒿; 沙埋处理下两种植物均未表现出受水分胁迫, 沙埋导致其光合面积下降, 幼苗顶土困难, 是影响其存活和高生长的主要生态机制; 随着沙埋深度增加, 沙蓬幼苗丙二醛(MDA)含量显著增加, 盐蒿幼苗MDA含量下降, 虽然二者膜透性均呈增加趋势, 但沙蓬膜透性增加幅度显著低于盐蒿, 说明细胞膜受损是导致二者幼苗存活率下降和生长受到抑制的主要生理机制, 沙蓬膜透性受损程度较低是其耐沙埋能力较强的主要生理机制; 沙埋胁迫下, 虽然两种植物都通过提高过氧化物酶活性和脯氨酸含量减轻细胞膜受损程度, 但沙蓬体内超氧化物歧化酶也表现出重要协调作用, 使之酶促系统在保护细胞膜免受胁迫损伤过程中的作用更有效。  相似文献   

15.
盐分和底物对黄河三角洲区土壤有机碳分解与转化的影响   总被引:9,自引:0,他引:9  
土壤盐碱化能抑制微生物活性,影响土壤有机碳的分解与转化。本研究以黄河三角洲盐碱耕地为研究对象,采用室内恒温培养法,设置3个NaCl盐分梯度(S1:0.1%;S2:0.5%;S3:0.9%),通过在土壤中添加不同底物(CK:不添加底物;N:添加氮;C:添加碳;C N:添加碳 氮),研究该土壤释放CO2–C量、土壤微生物生物量碳(SMBC)、土壤微生物呼吸商(qCO2)及溶解性有机碳(DOC)对盐分和底物的响应。结果表明:在45 d的培养期内,CK、N处理中S1盐分土壤释放CO2–C量最高,S2和S3明显低于S1,降低幅度分别为18.3%–23.7%和24.3%–39.8%。C、C N处理中3个盐分土壤释放CO2–C量差异较小,特别是在C N处理中,3个盐分土壤释放CO2–C差异不显著。4个底物处理中,SMBC均在S1和S2盐分中含量较高,S3盐分最低。与CK相比,N处理并不能提高SMBC含量,C、C N处理可明显提高SMBC,但S1和S2盐分土壤提高的幅度(80.4%–80.5%、58.0%–58.7%)明显高于S3(68.9% 、49.7%)。4个底物处理中,qCO2均在S1盐分土壤中最高,C、C N处理可明显提高qCO2。CK、N处理中3个盐分土壤DOC差异不显著,C、C N处理中S3盐分土壤DOC较高。说明在无碳源输入条件下,增加盐分含量能明显抑制土壤释放CO2量。添加碳源后,盐分含量对土壤释放CO2的影响变小。微生物对碳源和盐分胁迫的响应较快,添加碳源能明显提高微生物数量及其活性。但较高盐分(含盐量>0.5%)可明显降低土壤微生物活性及对外源碳的利用率,导致较高盐分SMBC及qCO2较低而DOC较高。  相似文献   

16.
Summary

Responses of larvae of two rhizocephalan species to changes in seawater temperature and salinity were studied under laboratory conditions. Peltogasterella gracilis parasitizes the hermit crab Pagurus pectinatus, which occurs at stable salinity and gradually changing temperature in summer. Sacculina polygenea is a parasite of the crab Hemigrapsus sanguineus, which lives in the intertidal zone in summer where salinity and temperature can fluctuate during the day. The development of both species is comprised of five naupliar stages and the cyprid stage, and it was considered successful if more than 50% of the nauplii attained the cyprid stage. P. gracilis nauplii successfully developed at 12–20°C and 30–34‰, but at 22°C successful development occurred in a narrower salinity range (32–34‰). All nauplii died both at 25°C and in 26‰. S. polygenea nauplii successfully reached the cyprid stage at higher temperatures (18–25°C) and a wider salinity range (18–34‰) than P. gracilis nauplii, but at 12°C and 16‰ larval development of S. polygenea was suppressed. Under favorable conditions, naupliar development lasted 3.5 days in P. gracilis and 2–3 days in S. polygenea. The cyprids of both rhizocephalan species demonstrated a greater resistance to temperature and salinity changes than nauplii. However, P. gracilis cyprids were active in a narrower salinity range (16–34‰), as compared to S. polygenea cyprids (8–34‰). Under favorable conditions the cyprids of both species survived for 6 to 10 days.  相似文献   

17.
Seed viability and germination are key factors in the success of restoration efforts, especially when stored seeds are used. However, the effect of seed storage on germination of most of the native Arabian species is not well documented. We investigated the effect of storage time and role of the seed mucilage in regulating germination, dormancy, salinity tolerance and consequential survival strategy of F. aegyptia in an unpredictable arid desert setting. Effect of light and temperature during germination was studied under two photoperiods and two thermoperiods using intact and de-mucilaged seeds. Presence of mucilage and thermoperiod did not affect the germination. However, seed collection year and photoperiod had a highly significant effect on the germination. Increasing salinity levels decreased the germination of F. aegyptia but ungerminated seeds were able to germinate when salinity stress was alleviated. Seed storage at room temperature enhances the germination percentage, indicating that F. aegyptia seeds have physiological dormancy and it can be alleviated by after-ripening at dry storage. In addition, F. aegyptia seeds show ability to germinate at lower salinity concentration and remain viable even at higher saline conditions, indicating their adaptability to cope with such harsh environmental conditions.  相似文献   

18.
鱼腾飞  冯起  刘蔚  司建华  席海洋  陈丽娟 《生态学报》2012,32(22):7009-7017
生态输水作为一项改善黑河下游生态环境的人工输水工程,研究土壤水盐与地表植被对输水的响应对于下游植被的恢复与重建具有重要的理论和实践意义。以2001年和2010年野外土壤和植物样方调查资料为基础,探讨了黑河下游土壤水盐对生态输水的响应及其与植被生长的关系,结果表明:(1)输水后不同深度土壤含水率的增加幅度依次为:胡杨林>柽柳林>草地;(2)不同群落土壤含盐量的增加幅度依次为:苦豆子>柽柳>梭梭>胡杨;同时,土壤盐分主要以HCO3-和Na+为主的轻度盐化土向以SO42-、Cl-及Ca2+等为主的中度和强度盐化土转化;(3)以胡杨为例,土壤含水率小于6%时,密度和冠幅与土壤含水率呈正相关,但大于6%时,冠幅和密度分别介于40-70 m2和0.5-5株/100m2之间;同样,土壤水溶性盐含量小于1%时,密度和冠幅与土壤含水率呈正相关,但大于1%时,密度在0.5-5株/100m2之间,造成上述结果的原因更多是群落的一种"自然稀疏"现象。  相似文献   

19.
研究了盐度(0、0.02、0.04和0.08 mol·L~(-1))和黑松母树大小对山东半岛北部海防林的主要造林树种黑松种子萌发和幼苗早期生长的影响.结果表明:盐度对黑松种子的发芽率有显著影响,随着NaCl浓度的升高,种子萌发率逐渐下降;盐分抑制黑松幼苗的早期生长,随着盐浓度升高,黑松幼苗的根长、芽长及根干质量均显著降低;母树大小在总体上对种子萌发率没有影响,但显著影响黑松幼苗的根长、芽长和芽干质量;盐度和母树大小的相互作用显著影响黑松幼苗的根长和芽长.而对黑松种子萌发率、幼苗根干质量和芽干质量的影响不显著.
Abstract:
Pinus thunbergii is the main forestation tree species of coastal protection forests in northern Shandong Peninsula of China. Its seed germination and seedling early growth were stud-ied under the conditions of different water salinity (0, 0. 02, 0. 04, and 0. 08 mol·L~(-1)) and mother tree sizes. With increasing sea water salinity, the seed germination rate, root-and plu-mule length, and the dry weights of root and plumule decreased significantly. Mother tree size had little effects on the seed germination rate, but affected the root-and plumule length and the plumule dry weight significantly. The interaction of sea water salinity and mother tree size affect-ed the root-and plumule length significantly, but less affected the germination rate and the dry weights of root and plumule.  相似文献   

20.
核磁共振(NMR)技术由于具有高效快速、不破坏土壤结构且对人体无害等优点,逐渐被应用到土壤学相关领域研究中。然而,土壤中顺磁物质的存在对核磁共振信号特征的影响仍不明确。本研究旨在揭示顺磁物质对不同类型土壤低场核磁共振(LF-NMR)信号特征和土壤含水量测定的影响。结果表明:土壤水的LF-NMR信号量最高可达150左右,土壤矿物、有机质和微生物等固相物质的LF-NMR信号量基本不超过0.3,相对可以忽略。质地和顺磁物质对土壤水的LF-NMR信号量测量有更大影响。LF-NMR仪器存在弛豫时间监测盲区,信号量损失主要是由于顺磁物质加速了水中氢质子的弛豫过程,导致小孔隙中水分反馈的极快的LF-NMR信号不能被监测设备捕获。对于顺磁物质含量较少的壤性潮土(1.2%)和黏壤性黑土(1.3%),LF-NMR信号量损失不大,其与土壤含水量呈线性关系;但对于黏粒含量(45.3%)和顺磁物质含量(4.0%)较高的黏性红壤,测定中会损失一部分LF-NMR信号量,监测到的LF-NMR信号量与土壤含水量不再呈线性关系。此外,外源添加顺磁物质(3.0 g·L-1的MnCl2溶液)也会降低黑土和红壤中可被监测的LF-NMR信号量,黑土和红壤的信号量最大损失率分别为41.0%和46.7%,极大地改变其与土壤含水量之间的定量关系。因此,在利用LF-NMR测量富含顺磁物质(>1.3%)或有外源顺磁物质进入的黏性土壤的含水量时,应先通过校正降低顺磁物质等对LF-NMR信号量的影响。研究结果对利用低场核磁共振技术准确分析土壤水分分布及土壤孔隙结构具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号