首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To illustrate the ecological factors and process leading to the observed diversity patterns of vascular epiphytes, we examined the effect and importance of host tree traits on epiphyte richness and spatial aggregation of epiphytes. The study was conducted in warm-temperate forest in Japan. The recorded host traits were diameter, height, species, habitat topography, and growth rate, and we analyzed the effects and importance of these traits on three species groups: total epiphytic species, epiphytic orchid species, and epiphytic pteridophyte species. Diameter and species of host trees had the greatest influence on epiphytes and their magnitudes were roughly similar in all species groups. Growth rate and topography were less important than host size and species. Growth rate had a negative effect on all three groups, and topography was important for pteridophytes. Epiphyte richness did not exhibit clear spatial aggregation. Our results suggest that size, stability, and quality of the host are equally important in determining epiphyte colonization.  相似文献   

2.
海南岛热带天然针叶林附生维管植物多样性和分布   总被引:2,自引:0,他引:2       下载免费PDF全文
作为热带林中一个重要的特征性组分, 附生维管植物对于维持热带森林的物种多样性及其生态系统功能均具有重要作用。该文首次系统地报道了热带天然针叶林中的附生维管植物多样性和分布特征。以海南岛霸王岭国家级自然保护区保存完好的热带天然针叶林(我国唯一较大面积分布的南亚松(Pinus latteri)天然林)中的附生维管植物为研究对象, 通过样带调查(共设置12个10 m × 50 m的样带, 记录每个样带内胸径(DBH) ≥ 5 cm树木上附生维管植物的物种名称、株数及附生高度), 分析附生维管植物的物种多样性和空间分布特征。结果表明: 1)热带针叶林0.6 hm 2面积内共有附生维管植物769株, 分属于7科17属27种, 附生兰科植物和萝摩科植物为优势类群; 2)附生维管植物在水平方向上呈现出聚集分布; 3)附生维管植物在垂直方向上, 在中等高度层次(10-20 m)分布最多, 在下层(0-5 m)也有较多的分布; 4)少数附生维管植物对南亚松表现出一定的选择性, 如华南马尾杉(Phlegmariurus fordii)、玫瑰毛兰(Eria rosea)、眼树莲(Dischidia chinensis)和铁草鞋(Hoya pottsii)等; 5)附生维管植物的物种丰富度及多度与宿主胸径均存在显著的正相关关系。  相似文献   

3.
Questions: Is the occurrence of vine species in neotropical rain forests primarily determined by properties of the forest (environmental factors), by properties of the trees (tree species or tree size) or are vines randomly distributed? Location: Maya Biosphere Reserve, Guatemala. Methods: In five 1‐ha plots that span variation from unlogged forest to forest impacted by recurrent human disturbance we recorded the presence of all climbing vine species on every tree. The presence of all free standing vine species and 11 environmental variables were recorded in 100‐m2 subplots. The relationship of host tree diameter and host tree identity on single tree vine species richness was investigated by GLM modelling. Partial redundancy analyses were used to partition the variation in vine species composition on two sources: environmental factors and tree species identity. Results: Single tree vine richness increased with increasing host tree DBH and differed significantly among host species. For climbing vines, the ratio of variation in subplot presence explained by tree species and by environmental variables was ca. 4:1 (in the most disturbed logged plots slightly lower), for free standing vines this ratio varied from 1:2 in the most disturbed logged plots to 9:1 in reserve plots, while a ratio of ca. 1:1 was found for all plots analysed together. Conclusion: Different tree species have different probabilities of being infested by vines. Vines see both the forest and the trees; the environment is more important in earlier developmental stages, properties of individual trees become more important from the time vines start to climb.  相似文献   

4.
Vascular epiphytes represent a highly diverse element of tropical rain forests, but they depend strongly on the structure and taxonomic composition of their tree communities. For conservation planning, it is therefore critical to understand the effect of host tree characteristics on epiphyte species richness in natural and anthropogenically transformed vegetation. Our study compares the effect of human land‐use on epiphyte diversity based on 220 study plots in a lowland rain forest and an Andean cloud forest in western Ecuador. We evaluate the relevance of host tree size and taxonomic identity for epiphyte species richness in contiguous primary forests, forest fragments, isolated remnant trees (IRTs), and secondary forests. At both study sites, epiphyte diversity was highest in primary forests, and it was lowest on IRTs and in secondary forests. Epiphyte species numbers of forest fragments were significantly reduced compared with the contiguous primary forest at the lowland study site, but not in the cloud forest area. Host tree size was a core predictor among secondary forests, but it had less significance within other habitat types. Taxonomic identity of the host trees also explained up to 61 percent of the variation in epiphyte diversity, especially for IRTs. The structural and taxonomic composition of the tree community in anthropogenically transformed habitat types proved to be fundamental to epiphyte diversity. This highlights the importance of deliberate selection of tree species for reforestation in conservation programs and the possible negative effects of selective logging in primary forests. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

5.
Aim For epiphytic plants trees are habitat units, and tree size determines epiphyte species richness. While growing, trees generate vertical microhabitats that are exploited by epiphytes. One would expect to find four different types of relationship between tree size and epiphyte species richness: positive linear (young trees), neutral (old trees), negative (old decaying trees) and positive asymptotic (trees of mixed size class in a mature forest). We tested these relationships in plots of colonizing sweetgum trees in pastureland, isolated remnant trees in pastureland (old oaks) and sweetgum and oaks in a pristine forest. Location The study was carried out in a landscape shaped by the fragmentation of lower montane cloud forest in San Andrés Tlalnelhuayocan (19°30′56′′ N and 96°59′50′′ W; 1500–1600 m a.s.l.) in central Veracruz, Mexico. Methods We measured the d.b.h. of all oaks and sweetgum trees (d.b.h. ≥ 5 cm) present in pastureland and in three 100 m2 plots of a lower montane cloud forest. All trees were climbed and species richness of the epiphytes recorded. Results As expected, colonizer trees in pastureland showed a linear positive relationship. Although we found evidence that remnant oaks in pastureland had a neutral relationship between tree size and epiphyte species richness, the low power of the test did not allow us to make conclusions about the kind of relationship. Mixed size‐class pristine forest trees showed a positive linear relationship between tree size and epiphyte species richness instead of a positive asymptotic one. Main conclusions Our results suggest that in the study area epiphyte communities are unsaturated, as the number of species increases with tree size and does not reach a ceiling. This evidence supports the idea that the species–area relationship is not asymptotic. However, the epiphyte community on remnant pastureland oaks may be saturated as epiphyte species richness did not increase with tree size, but a larger sample size is needed to confirm the neutral pattern. Neutral, asymptotic and negative patterns in the relationship between tree size and epiphyte species richness depend on the saturation of the trees by epiphytes. Other studies have suggested tree saturation, but further research is necessary in order to confirm or rule out these patterns.  相似文献   

6.
The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama   总被引:1,自引:0,他引:1  
Aim Information on the community composition, structure, and dynamics of epiphyte vegetation is scarce. A survey of the epiphytes occurring on all individuals of one particular host tree species in a well-studied neotropical research site allowed us a comparison of the epiphyte flora of this tree with the local epiphyte flora, the analysis of spatial distribution patterns and the use of these patterns as indications for changes in time. In the future, our results can be used as a baseline data-set for the direct observation of the long-term dynamics in epiphyte communities. Location The study was conducted on Barro Colorado Island (BCI), Panama. Methods We recorded all individuals of the vascular epiphytes growing on Annona glabra L., a flood-tolerant, multiple-stemmed tree, which is restricted to the shoreline of BCI. Data on tree biometrics, epiphyte species, and epiphyte abundances were collected for more than 1200 trees. Results In total, we encountered almost 15,000 epiphytic individuals in sixty-eight species, corresponding to more than one third of the entire epiphyte flora of Barro Colorado Island. The component species differed strongly in abundance: the four most important species accounted for >75% of all individuals. In most cases, the same four species were also the first to colonize a tree (=phorophyte). Colonization patterns indicated no replacement of early colonizers by late arrivals. Species richness and epiphyte abundances showed a positive correlation with the size and the density of the host trees. All species showed a highly clumped distribution and the physiognomy of epiphyte communities of individual trees was dominated either by one or several of the four most common species or by a set of frequently co-occurring tank bromeliads. Other species were dominant only in exceptional cases. Most species were always rare. A distance effect on community composition was mostly confined to a local scale with an increased similarity in the species assemblage of stems of a tree v. neighbouring trees. Main conclusions The epiphytes on a single small phorophyte species may encompass a surprisingly large proportion of the local epiphyte flora. The observations that most tree crowns are inhabited by a single or only very few species, and that all epiphyte species show highly clumped distributions suggest a predominance of very local dispersal within a tree crown, which is only infrequently interrupted by successful long-distance dispersal between crowns.  相似文献   

7.
Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.  相似文献   

8.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

9.
We investigated species-specific relationships among two species of vascular epiphytes and ten host tree species in a coastal plain forest in the southeastern United States. The epiphytes Tillandsia usneoides and Polypodium polypodioides were highly associated with particular host species in the field, but host traits that favored colonization were inadequate to fully explain the epiphyte-host associations for either epiphyte. Field transplant experiments that bypassed epiphyte colonization demonstrated that the growth of epiphytes was significantly higher on host tree species that naturally bore high epiphyte loads than on host species with few or no epiphytes. These species-specific relationships were highly correlated with the water-holding capacity of the host tree's bark. Positive and negative effects of throughfall, light attenuation by the canopy, and bark stability did not explain the overall patterns of host specificity, but did correlate with some epiphyte-host species relationships. The relative importance of particular host traits differed between the "atmospheric epiphyte" Tillandsia, and the fern Polypodium, which roots in the bark of its hosts. Species-specific interactions among plants, such as those described here, suggest that communities are more than individualistic assemblages of co-occurring species.  相似文献   

10.
Secondary habitats are increasing in importance in tropical countries due to ongoing destruction of pristine vegetation. In spite of the magnitude of current changes, our understanding of their effects on nontrees (e.g., nonvascular or vascular epiphytes) is still very patchy, particularly in lowland habitats. Here, we report a study with isolated pasture trees in southwest Panama. The >800 studied trees, which belonged to >100 different species, harbored almost 27,000 epiphytes of 83 species. Orchidaceae was the most species‐rich family, with almost 60 percent of all species, while Bromeliaceae were most abundant. A rainfall gradient in the study region from ca 1000 to >3000 mm explained more of the variation in species abundance and richness than host characteristics (e.g., species identity, tree size). The unexpectedly large number of epiphytes in these pastures still represents a substantial change relative to a natural setting, which is suggested by a comparison with a forest inventory under similar climatic conditions. In pastures, species richness was lower as deduced from individual‐based rarefaction curves, a larger proportion of species and individuals showed crassulacean acid metabolism, and the relationship of epiphyte abundance/species richness and tree diameter was much less steep. Even the already reduced diversity, however, may be only transient in secondary habitats—the long‐term persistence of epiphyte populations in pastures is an open question and has to be addressed by repeated monitoring to fully evaluate the significance of pasture trees for the conservation of vascular epiphytes in tropical lowlands.  相似文献   

11.
Laube S  Zotz G 《Annals of botany》2006,97(6):1103-1114
BACKGROUND AND AIMS: A possible role of host tree identity in the structuring of vascular epiphyte communities has attracted scientific attention for decades. Specifically, it has been suggested that each host tree species has a specific subset of the local species pool according to its own set of properties, e.g. physicochemical characteristics of the bark, tree architecture, or leaf phenology patterns. METHODS: A novel, quantitative approach to this question is presented, taking advantage of a complete census of the vascular epiphyte community in 0.4 ha of undisturbed lowland forest in Panama. For three locally common host-tree species (Socratea exorrhiza, Marila laxiflora, Perebea xanthochyma) null models were created of the expected epiphyte assemblages assuming that epiphyte colonization reflected random distribution of epiphytes in the forest. KEY RESULTS: In all three tree species, abundances of the majority of epiphyte species (69-81 %) were indistinguishable from random, while the remaining species were about equally over- or under-represented compared with their occurrence in the entire forest plot. Permutations based on the number of colonized trees (reflecting observed spatial patchiness) yielded similar results. Finally, a third analysis (canonical correspondence analysis) also confirmed host-specific differences in epiphyte assemblages. In spite of pronounced preferences of some epiphytes for particular host trees, no epiphyte species was restricted to a single host. CONCLUSIONS: The epiphytes on a given tree species are not simply a random sample of the local species pool, but there are no indications of host specificity either.  相似文献   

12.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

13.
The commensalistic interaction between vascular epiphytes and host trees is a type of biotic interaction that has been recently analysed with a network approach. This approach is useful to describe the network structure with metrics such as nestedness, specialization and interaction evenness, which can be compared with other vascular epiphyte-host tree networks from different forests of the world. However, in several cases these comparisons showed different and inconsistent patterns between these networks, and their possible ecological and evolutionary determinants have been scarcely studied. In this study, the interactions between vascular epiphytes and host trees of a subtropical forest of sierra de San Javier (Tucuman, Argentina) were analysed with a network approach. We calculated metrics to characterize the network and we analysed factors such as the abundance of species, tree size, tree bark texture, and tree wood density in order to predict interaction frequencies and network structure. The interaction network analysed exhibited a nested structure, an even distribution of interactions, and low specialization, properties shared with other obligated vascular epiphyte-host tree networks with a different assemblage structure. Interaction frequencies were predicted by the abundance of species, tree size and tree bark texture. Species abundance and tree size also predicted nestedness. Abundance indicated that abundant species interact more frequently; and tree size was an important predictor, since larger-diameter trees hosted more vascular epiphyte species than small-diameter trees. This is one of the first studies analyzing interactions between vascular epiphytes and host trees using a network approach in a subtropical forest, and taking the whole vascular epiphyte assemblage of the sampled community into account.  相似文献   

14.
Question: In a southern temperate rain forest, we addressed three questions: (1) Does the abundance of climbing plants increase with light availability? (2) Do host tree species differ in their susceptibility to vine infestation? (3) How does the relationship between host tree trunk diameter and relative abundance of vines vary with their climbing mechanism? Location: Two sites in the temperate evergreen rain forest of southern Chile: Puyehue (40°39′S, 72°09′W; 350 m a.s.l.) and Pastahue (42°22′S, 73°49′W; 285 m a.s.l.). Methods: We sampled vines in 60 25‐m2 plots, with 20 plots in each of three light environments: mature forest, forest edges and canopy gaps. In each plot, for every tree ≥1.50‐m tall of any diameter we counted and identified all climbing plant individuals at a height of 1.30 m. We also counted, measured (trunk diameter at 1.30 m) and identified all these trees, and determined prevalence of vine infestation for each tree species. Results: Light availability in forest plots did not affect vine abundance when the number and size of host trees was taken into account. Overall, vine abundance increased with host tree trunk diameter. Tree species did not differ in the prevalence of vine infestation. The relative abundance of stem twiners and adhesive climbers decreased and increased with trunk diameter, respectively. The densities of stem twiners and adhesive climbers were negatively correlated across the forest. Conclusion: We provide further evidence that the pattern of vine abundance is independent of light availability in southern temperate rain forests, in contrast to results commonly reported for tropical rain forests. We also show that support suitability across the forest varies with the mechanism by which vines climb, probably due in part to biomechanical constraints and in part to vine interspecific competition, a virtually unexplored ecological factor.  相似文献   

15.
The epiphytes of the trunks and branches of mature Sitka spruce (Picea sitchensis) trees were studied in twelve plantations containing open spaces (glades, rides and roads) in the east and southwest of Ireland. A pair of trees was studied at each site: one tree at the south-facing edge of an open space and one in the forest interior. Spruce trees were found to support a moderately diverse range of bryophytes and lichens, including two relatively rare bryophyte species. Clear patterns in vertical distribution were identified, with bryophyte richness and cover decreasing and lichen richness and cover increasing from the tree base to the upper trunk. The open spaces themselves did not appear to affect overall epiphyte diversity, with no significant differences in any of the diversity measures between edge and interior trees. The main effect of open spaces was on the epiphyte cover of the edge trees. This was related to increased light levels combined with the presence of live branches from close to ground level on the south sides of the edge trees, which produced optimum conditions for bryophytes at the tree base and lichens in the upper plots. However, this dense side-canopy negatively affected epiphyte diversity on the north sides of the edge trees. Further research is required to assess the effects of open spaces within forestry plantations on epiphyte diversity.  相似文献   

16.
The epiphytes of the trunks and branches of mature Sitka spruce (Picea sitchensis) trees were studied in twelve plantations containing open spaces (glades, rides and roads) in the east and southwest of Ireland. A pair of trees was studied at each site: one tree at the south-facing edge of an open space and one in the forest interior. Spruce trees were found to support a moderately diverse range of bryophytes and lichens, including two relatively rare bryophyte species. Clear patterns in vertical distribution were identified, with bryophyte richness and cover decreasing and lichen richness and cover increasing from the tree base to the upper trunk. The open spaces themselves did not appear to affect overall epiphyte diversity, with no significant differences in any of the diversity measures between edge and interior trees. The main effect of open spaces was on the epiphyte cover of the edge trees. This was related to increased light levels combined with the presence of live branches from close to ground level on the south sides of the edge trees, which produced optimum conditions for bryophytes at the tree base and lichens in the upper plots. However, this dense side-canopy negatively affected epiphyte diversity on the north sides of the edge trees. Further research is required to assess the effects of open spaces within forestry plantations on epiphyte diversity.  相似文献   

17.
For over three decades, the Johansson zones have been widely used in epiphyte studies as a way of stratifying the host tree into habitat zones. The usefulness of this system, however, has been questioned. We test the effectiveness of the Johansson zones by grouping epiphyte species by the substrate and microclimatic attributes of their individual occurrences and assessing the fidelity of these groups to the Johansson zones. Habitat characteristics were recorded for every individual epiphyte on 30 trees in the lower montane rain forests of northeastern Australia. Twenty‐four epiphyte species were agglomerated into four groups using Ward's method. Group 4 was highly distinct and included shade‐loving species and nomadic vines from the lower zones of the host trees. Group 3 contained species from the most exposed habitats. Group 1 had higher light levels and lower substrate thickness than Group 2, yet both groups had close to identical distributions over the Johansson zones. This suggests that groups of epiphyte species may utilize different micro‐sites within the same zone. While the Johansson zones are a useful tool in epiphyte studies, finer partitioning of habitat within the host tree may be missed.  相似文献   

18.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

19.
Aim Lichen epiphytes are important for biodiversity conservation and are also widely applied as environmental indicators. However, biogeographical and ecological knowledge underpinning lichen epiphyte conservation, and the use of lichens as indicators, is based primarily on a limited range of ‘macrolichen’ species. Wider trends in epiphyte biodiversity remain largely unexplored. This paper examines the community structure of lichen epiphytes on aspen (Populus tremula L.) in Scotland, including species across all functional groups and comprising, therefore, taxonomically difficult ‘microlichens’. Location Northern Britain (Scotland). Methods Epiphytes were sampled from 12 sites throughout Scotland and examined at two scales: between and within aspen stands. Species were classified into contrasting functional groups and ordination by detrended correspondence analysis was used to summarize community structure. Results Within aspen stands (between trees) epiphyte communities showed successional patterns related to tree age. These successional patterns changed predictably for stands aligned along a climatic gradient (between stands). Main conclusions A dual climatic–successional trend in epiphyte community structure is presented. Large‐scale trends in epiphyte diversity are explained as the local response of species with contrasting functional traits to climate and autogenic succession. Turnover of functional groups between stands is positively related to β‐diversity, and ecological limits to the frequency of contrasting functional groups are presented. Accordingly, the study and application of lichen species with similar functional traits may inadequately represent patterns of biodiversity. This prompts criticism of the currently accepted conservation strategy, i.e. (1) an emphasis in the conservation literature on ‘macrolichen’ species with similar ecologies and (2) the application of lichen indices over climatically variable geographical areas.  相似文献   

20.
Habitat isolation is one of the most important factors endangering the biodiversity, but little research has been done with vascular epiphytes. In order to understand the effect of isolation on the epiphyte community, we studied epiphyte diversity on three plots in a forest fragment, two riparian forest fragments, and in isolated pastureland trees. We found 118 vascular epiphyte species. On forest plots, both epiphyte richness per tree (Stree) and species turnover rate within trees (βtree) registered the highest values, although the lowest Stree diversity was also found there; additionally inside the forest were host species with clearly different epiphyte community. Stree and βtree diversities of riparian fragments behaved similarly to those of the forest. Isolated trees had the second highest Stree diversity, although their βtree diversity was the lowest. In the forest plots were both, the highest and lowest expected accumulated richness (α diversity); on riparian fragments it was intermediate, and the second lowest α diversity was registered for isolated trees. Species turnover rate among plots (β) was high and was associated with both, isolation and a distance gradient from permanent water sources. The epiphyte community on isolated trees was clearly different to the other habitats. Results suggest that deforestation eliminated dry areas and specific hosts that were important for the maintenance of epiphyte species richness. In pastureland trees the epiphyte βtree diversity diminished, suggesting a simplification of the environment for epiphytes and causing a low α diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号