首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Despite its small size, New Caledonia has a flora which includes 43 endemic species of conifer. This study examines the stand structure of the New Caledonian conifer, Araucaria laubenfelsii Corbasson, a species which occurs on ukramafic soils as an emergent tree in rainforest and in an unusual structural association with maquis vegetation. Fire and cyclone blow-down are the primary disturbances in the maquis, but fire is infrequent in the rainforests which is evident from the low proportion of fire scarred trees. Preliminary results show abundant seedlings and saplings of A. laubenfelsii both in maquis and forest. Size class distributions of individuals suggest that the species is continuously regenerating in the maquis and immature forests. Variability in the stand structure in maquis communities reflects the probable patchy nature of disturbance from small-scale fires and blow-down from tropical cyclones. In mature forests, Nothofagus codonandra (Baillon) Steenis is the dominant canopy species and ‘other tree species’ are continuously regenerating, while the size class distributions and basal area of A. laubenfelsii suggest that there is, at present, limited regeneration of this species. Tree ring counts indicate that individuals in forest areas grow at a slower rate than those in maquis, but attain greater age, probably as a result of greater protection from fire.  相似文献   

2.
This study compares demographic parameters and population dynamics for high disturbance (maquis) and low disturbance (rain forest) environments of the montane conifer, Araucaria laubenfelsii, in New Caledonia. The establishment, growth, survival and reproduction of ca 2500 individuals were followed in permanent plots over 10 yr. Growth and survival rates for A. laubenfelsii show that it is a long-lived, slow growing tree, with evidence of suppression in the sapling size classes in mature rain forest. Growth rates for all size classes are generally faster in maquis than rain forest. Transition matrix analyses estimated positive rates of population increase (λ values>1), with populations expanding in maquis, and stable in mature forest. Araucaria laubenfelsii is able to regenerate continuously in maquis and early successional rain forest, but recruitment is limited in older stands. Life table response experiment analyses showed that reproduction, and transitions from sapling to mature tree stage, contributed positively to λ in maquis, but negatively in forest. Araucaria laubenfelsii on Mont Do can be considered a long-lived pioneer, with early maquis colonizers helping to drive succession from maquis to forest. While opportunities for recruitment decline with time as rain forest sites develop a closed canopy, occasional gap phase recruitment, combined with disturbance by cyclones, landslides and fire, provide opportunities to ensure species persistence. Understanding contrasting population dynamics of A. laubenfelsii in maquis and rain forest will better facilitate conservation management of this species, particularly given current high rates of land conversion and degradation in New Caledonia. Abstract in French is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

3.
This study examined the role of shading and cloud combing of moisture by scattered trees of the emergent conifer Araucaria laubenfelsii (Corbass.) in montane shrubland‐maquis at Mont Do, New Caledonia, in facilitating the succession from shrubland to rain forest. Water collection experiments showed that these trees combed significant amounts of water from low clouds on days when no rainfall was recorded and deposited this moisture on the ground beneath the tree canopy. Analysis of photosystem II function in A. laubenfelsii and five other plant species using fluorometry revealed much lower photosystem stress in plants beneath scattered A. laubenfelsii than for individuals exposed to full sunlight in the open maquis. Transition matrix analyses of vegetation change based on “the most likely recruit to succeed” indicated that the transition from maquis to forest was markedly faster when emergent trees of A. laubenfelsii acted as nuclei for forest species invasion of die maquis. On the basis of these lines of evidence, it is argued that increased moisture and shading supplied to the area directly below the crown of isolated A. laubenfelsii trees in the maquis facilitates the establishment of both conifer seedlings and other rain forest tree and shrub species. In the absence of fire, rain forest can reestablish through spread in two ways: first, by expansion from remnant patches, and second, from coalescence of small rain forest patches formed around individual trees of A. laubenfelsii.  相似文献   

4.
Abstract. The size structure of the endemic New Caledonian conifer Agathis ovata is reported for sample stands in forest and maquis from three areas on ultramafic substrates in the south of the main island (Grand Terre). In closed forest Agathis ovata is typically represented by a low density of emergent adult trees with only limited evidence of seedling recruitment. In maquis, Agathis ovata is represented by individuals of all sizes, with seedlings and saplings abundant in most sample stands. Preliminary evidence from tree-ring studies indicates that rings may be annual. Estimated diameter growth rate is about 2 mm y?1 for trees ≥ 10 cm d.b.h., and ring counts suggest tree ages of up to 400 years in maquis and 500 years in forest. Agathis ovata, and three other members of the Araucariaceae found in New Caledonia (Araucaria laubenfelsii, A. montana and A. rulei), are the only tree species which regularly occur scattered in maquis in this way, creating an unusual structural assemblage. No angiosperm tree species show this behaviour. The circumstances under which the Agathis ovata– maquis stands arise and are maintained are the subject of further investigation. Preliminary evidence for tree ages indicates that these stands predate European arrival in New Caledonia and so are not the result of recent increases in the frequency and intensity of human disturbances. The presence of fire scars on many individuals, and location of most stands on slopes and spurs with outcropping laterite (cuirasse), suggests that this assemblage may owe its existence to the interplay of fire regime, topography and rockiness, and a resistance to fire in Agathis ovata which increases with plant size and age.  相似文献   

5.
Abstract Aim The research explores how changes in disturbance regime resulting from human settlement may affect landscape structure. A spatially explicit grid‐based simulation model is used to explore the interplay between humans, fire regime and landscape composition. Location The study site for this research is the botanical reserve at Mont Do, New Caledonia. The endemic conifer Araucaria laubenfelsii (Araucariaceae) forms a key component of the landscape at Mont Do. This species is unusual in that it is found scattered as an emergent in maquis and as a canopy species in adjacent rain forest patches. Although now dominated by a low maquis, prior to human settlement of New Caledonia, montane landscapes such as Mont Do are likely to have been heavily forested. Methods A spatially explicit simulation model, based on field data and palaeoecological information, was used to explore interactions between disturbance regime and the landscape. The model is described briefly here and more fully in Perry & Enright (2002) Ecological Modelling, 152 , 279. Results The model suggests that human‐influenced changes to the fire regime at Mont Do have been important in generating the current landscape structure. The origin and maintenance of forest landscapes and maquis‐forest mosaic landscapes are considered in the context of alternative stable states. Strong feedback loops between fire size and landscape composition, mediated at the smaller scale by other similar mechanisms, are capable of driving landscape change. The utility of a spatial state and transition modelling approach is demonstrated. Main conclusions The current landscape pattern on Mont Do is likely the result of changes to the fire regime occurring since human settlement. The specific mechanisms for this change outlined here may occur in a number of other similar systems. Understanding the origin and persistence of these ‘fire landscapes’ in New Caledonia and in the south‐west Pacific in general is crucial for their effective management.  相似文献   

6.
Abstract. The endemic New Caledonian conifer Agathis ovata occurs as an emergent tree in fire‐prone shrublands (maquis), and fire‐sensitive rainforest. Growth, survivorship and recruitment over 5 yr were compared for populations from forest and maquis on ultramafic substrates in New Caledonia to investigate whether demographic behaviour varied in response to the strongly contrasting forest and shrubland environments. Growth of seedlings and of small (30–100 cm height) and large (100 cm height; 5 cm DBH) saplings was slow, but varied significantly among stages, site types and years. The greatest difference in growth rates was among stages, seedlings growing 0.34 cm.yr?1, small saplings 1.06 cm.yr?1 and large saplings 2.13 cm.yr?1. Tree DBH increased by only 0.05 cm.yr?1 and, based on these rates, individuals with DBH of 30 cm are estimated to be more than 700 yr old. Few trees (3.5%) produced cones in any year and seedling recruitment was low, but some recruitment was recorded each year in both maquis and forest. Rates of recruitment per parent were highest in forest (1.28.yr?1, cf 0.78.yr?1), but the higher density of trees in maquis meant that overall recruitment was greater there (92 ha?1.yr?1, cf 56 ha?1.yr?1). Seedling mortality ranged from 0.9 to 2.9% among years with no significant difference between maquis and forest. No sapling mortality was recorded, but annual tree mortality ranged from 0 to 1.4%. Evidence from a recently burned site indicated that while trees may survive fire, seedlings and saplings do not. Post‐fire seedling recruitment per ha from surviving trees was four times lower than in unburned sites, but growth rates were four times higher. Similar demographic attributes, including high survivorship, low growth rate and low rates of recruitment over a long reproductive life, characterize Agathis ovata populations in both maquis and rainforest in New Caledonia and are indicative of a broad tolerance of light environments that is unusual among tree species. These demographic attributes help to explain the long‐term persistence of the species in these strongly contrasting habitats.  相似文献   

7.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

8.
Fire and succession in the ultramafic maquis of New Caledonia   总被引:3,自引:0,他引:3  
Aim This study investigates the role of fire and post fire succession in determining the structure and composition of vegetation on ultramafic iron crust soils. Location The study was conducted in the Plaines des Lacs region of southern New Caledonia. Methods A survey was made of eighty-eight sites, recording floristic composition, trunk size-class distributions, regeneration after fire, growth ring counts of Dacrydium araucarioides (Podocarpaceae) and historical information on past fires. Floristic data was ordinated using multidimensional scaling and an index of succession based on structural and historical information. A transition matrix model was developed to predict the effect of fire frequency on vegetation composition. Results The vegetation is undergoing postfire succession from maquis to forest, after about 75 years, and eventually to rainforest. Gymnostoma deplancheanum has a key role as an early colonist that produces shade, the bulk of the litter, and forms nitrogen fixing nodules with Frankia sp. However, the open canopy of Gymnostoma and slow litter decay creates flammable conditions. Though many species resprout from rootstocks, only thirty-nine persist through fires while 114 others colonize at later successional stages, as the litter layer and shade increase. Some early successional species are later excluded but these can persist locally in swamps and on rocky hill tops. Forest and rainforest are less flammable and the matrix model suggests that ignition frequency has a critical role in determining the abundance of maquis or forest. Main conclusions The vegetation mosaic represents a post fire succession from open maquis to forest. Palynological and charcoal records from late Pleistocene sediments suggest that fire has been a major factor determining the development of maquis vegetation since before the arrival of humans. Recently, frequent fires have converted much of the vegetation to maquis, posing a threat to some forest species and largely eliminating rainforest from iron crust soils.  相似文献   

9.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

10.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

11.
More frequent deposition of seeds by frugivores beneath plants in fruit could impose spatial limits to the distribution of plants dispersed by animals and contribute to species coexistence. Also, differences in diet and use of microhabitats by seed dispersers could promote spatial variation in the combination of seed species deposited. We investigated patterns of seed deposition of Miconia fosteri and Miconia serrulata (Melastomataceae) by birds in the Amazon. The goal was to determine how distribution and abundance of fruiting plants, both con‐ and hetero‐specifics, affect the spatial variability in clumping and composition of multi‐specific seed deposition. We established two 9‐ha plots in undisturbed terra‐firme understory in the Ecuadorian Amazon. Seed rain was sampled with seed traps located in four microsites: below plants of the focal species, below Anthurium eminens (Araceae), and in randomly selected microsites. We examined seed deposition in these microsites in relation to habitat, fruiting neighborhood (fruit abundance, and distance to and density of plants of the target species), and crop size of M. fosteri or M. serrulata to determine if microsites differed in abundance and species composition of seeds. Seed traps below plants in fruit received more seeds than did randomly located traps. Seeds of the target species were, moreover, more commonly deposited below con‐ rather than hetero‐specific plants. Seed aggregation below fruiting plants increased in forest neighborhoods where the abundance of fruits and the combination of fruiting plant species contributed to the arrival of seeds. Microsites differed notably in the combination of seeds deposited by frugivores, and differences were less pronounced among microsites that received seeds of M. fosteri and M. serrulata than among all microsites where at least some seed species were deposited by birds. We demonstrate that two closely related, ecologically similar species possess many similarities in their patterns of seed deposition and in the factors that affect those patterns. The combination of seed species deposited below foci of dispersal depended on the fruiting plant species, and the spatial patterns of seed deposition varied with the location of the microsite and the combination of co‐dispersed species in the neighborhood. Similar species that share the same dispersers were confronted with different combinations of seeds depending on the microsite where they arrived, which could promote forest heterogeneity in the combination of plant species.  相似文献   

12.
In the present study, we analysed the habitat association of tree species in an old‐growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6‐ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10‐m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well‐scattered seed distribution via wind and bird dispersal, as well as conspecific density‐dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study.  相似文献   

13.
Abstract. Several species of Araucaria and Agathis (Araucariaceae) occur as canopy emergents in rain forests of the western pacific region, often representing major components of total stand biomass. New data from permanent forest plots (and other published work) for three species (Araucaria hunsteinii from New Guinea, A. laubenfelsii from New Caledonia, and Agathis australis from New Zealand) are used to test the validity of the temporal stand replacement model proposed by Ogden (1985) and Ogden & Stewart (1995) to explain the structural and compositional properties of New Zealand rain forests containing the conifer Agathis australis. Here we propose the model as a general one which explains the stand dynamics of rain forests with Araucariaceae across a range of sites and species in the western Pacific. Forest stands representing putative stages in the model were examined for changes through time in species recruitment, growth and survivorship, and stand richness, density and basal area. Support for the model was found on the basis of: 1. Evidence for a phase of massive conifer recruitment following landscape-scale disturbances (e.g. by fire at the Huapai site, New Zealand for Agathis australis); 2. Increasing species richness of angiosperm trees in the pole stage of forest stand development (i.e. as the initial cohort of conifers reach tree size; >10 cm DBH); 3. A high turnover rate for angiosperms (<100 yr), and low turnover for conifers (≥ 100 yr) in the pole stage, but similar turnover rates for both components (50–100 yr) as forests enter the mature to senescent phase for the initial conifer cohort; 4. Very low rates of recruitment for conifers within mature stands, and projected forest compositions which show increasing dominance by angiosperm tree species; 5. A low probability of conifer recruitment in large canopy gaps created by conifer tree falls during the initial cohort senescent phase, which could produce a second generation low density stand in the absence of landscape scale disturbance; 6. Evidence that each of the three species examined required open canopy conditions (canopy openness > 10 %) for successful recruitment. The evidence presented here supports the temporal stand replacement model, but more long-term supporting data are needed, especially for the phase immediately following landscape level disturbance.  相似文献   

14.
To clarify recruitment patterns of Photinia glabra, which is an evergreen, broad‐leaved, bird‐dispersed tree species, we analyzed spatial distribution in P. glabra recruits at each growth stage and demography of current‐year seedlings with respect to distributions of adults in a warm‐temperate secondary forest, western Japan. Although individuals ≥ 5 cm diameter at breast height (DBH) that had nearly produced fruits showed a random distribution, seedlings (≥ 1 year old, < 10‐cm stem length [SL]), small saplings (10 ≤ SL < 30 cm) and large saplings (≥ 30‐cm SL, < 5‐cm DBH) were clumped and associated with reproductive adults at approximately 2–3‐m scales, nearly equal to their average crown radius. Based on monitoring the demography of current‐year seedlings, emerged seedling density profoundly decreased, and no seedlings survived at longer than an adult's crown scales, with distance‐dependent mortality as a result of disease and herbivory not greatly affecting the current‐year seedling mortality. Thus, aggregated seed dispersal under the crown of adult P. glabra would directly influence the distribution of recruits for P. glabra in this forest. Of the bird‐dispersed tree species in this forest, P. glabra produced the highest amount of fruits during large crop years, and their fruits ripened during the late seasonal period (early January), suggesting that birds might be strongly attracted to these species, in turn leading to seeds being deposited mostly under the tree crowns. We propose that dispersal limitation would occur, even in a bird‐dispersed tree species such as P. glabra, owing to plant–bird interactions in the forest.  相似文献   

15.
Aim In this study we examine fire history (i.e. c. 500 yr bp to present) of AraucariaNothofagus forests in the Andes cordillera of Chile. This is the first fire history developed from tree rings for an AraucariaNothofagus forest landscape. Location The fire history was determined for the Quillelhue watershed on the north side of Lanin volcano in Villarrica National Park, Chile. The long‐lived Araucaria araucana was commonly associated with Nothofagus pumilio and N. antarctica in more mesic and drier sites respectively. Methods Based on a combination of fire‐scar proxy records and forest stand ages, we reconstructed fire frequency, severity, and the spatial extent of burned areas for an c. 4000 ha study area. We used a composite fire chronology for the purpose of determining centennial‐scale changes in fire regimes and comparing the pre‐settlement (pre‐1883) and post‐settlement fire regimes. In addition, we contrasted Araucaria and Nothofagus species as fire‐scar recorders. Results In the study area, we dated a total of 144 fire‐scarred trees, representing 46 fire years from ad 1446 to the present. For the period from ad 1696 to 2000, using fire dates from Araucaria and Nothofagus species, the composite mean fire interval varied from 7 years for all fires to 62 years for widespread events (i.e. years in which ≥ 25% of recorder trees were scarred). Sensitivity to fire was different for Araucaria and Nothofagus species. More than 98% of the fires recorded by Nothofagus species occurred during the 1900s. The lack of evidence for older fire dates (pre‐1900) in Nothofagus species was due to their shorter longevity and greater susceptibility to being killed by more severe fires. Whereas the thin‐barked N. pumilio and N. antarctica are often destroyed in catastrophic fire events, large and thick‐barked Araucaria trees typically survive. The spatial extent of fires ranged from small patchy events to those that burned more than 40% of the entire landscape (c. > 1500 ha). Main conclusions Fire is the most important disturbance shaping the AraucariaNothofagus landscape in the Araucarian region. The forest landscape has been shaped by a mixed‐severity fire regime that includes surface and crown fires. High‐severity widespread events were relatively infrequent (e.g. 1827, 1909 and 1944) and primarily affected tall AraucariaN. pumilio forests and woodlands dominated by AraucariaN. antarctica. Although there is abundant evidence of the impact of Euro‐Chilean settlers on the area, the relative influence of this settlement on the temporal pattern of fire could only be tentatively established due to the relatively small number of pre‐1900 fire dates. An apparent increase in fire occurrence is evident in the fire record during Euro‐Chilean settlement (post‐1880s) compared with the Native American era, but it may also be the result of the destruction of evidence of older fires by more recent stand‐devastating fires (e.g. 1909 and 1944). Overall, the severe and widespread fires that burned in AraucariaNothofagus forests of this region in 2002, previously interpreted as an ecological novelty, are within the range of the historic fire regimes that have shaped this forested landscape.  相似文献   

16.
Since only 12.6% of the Brazilian Araucaria Forest remains and timber tree monocultures are expanding, biological invasion is a potential threat to the conservation of natural forest remnants. Here, we test (1) the susceptibility of Araucaria Forest to invasion by Pinus taeda and Eucalyptus saligna, (2) the efficiency of different mechanisms controlling the early establishment of these two exotic timber tree species, and (3) the potential of the native timber tree Araucaria angustifolia to establish successfully in ecologically-managed monocultures of Araucaria, Pinus and Eucalyptus. In Araucaria Forest, more than a thousand Pinus seeds landed annually in a hectare; however, experimentally exposed seeds were 100% removed in only 6 days. Furthermore, all experimentally transplanted seedlings of Pinus taeda and Eucalyptus saligna died in less than a year in Araucaria Forest, but not in the monocultures. Correlative evidence suggests that this mortality was associated to plant community richness, plant abundance, and soil fertility. Araucaria angustifolia, in contrast, showed an establishment success in ecologically-managed tree monocultures as high as that exhibited in its natural habitat. The current resistance of Araucaria Forest to invasion by exotic timber trees is good news for the conservation of Araucaria Forest remnants and for its keystone species. The understanding of the mechanisms providing such resistance against invasion points towards management tools for minimizing future threats.  相似文献   

17.
Question: Are species‐specific regeneration strategies and competition the dominant processes facilitating species coexistence in a Quercus liaotungensis dominated temperate deciduous forest? Location: Dongling Mountains, North China, 1300 m a.s.l. Methods: Ripley's K‐function was used to characterize the spatial patterns and spatial associations of two dominant tree species, Quercus liaotungensis and Betula dahurica, and a common subcanopy species, Acer mono, at different growth stages (adult, sapling, seedling). Results: Seedlings, saplings and adults of all three species exhibited clumped distributions at most spatial scales. Quercus seedlings and saplings were positively associated with conspecific adult trees and spatially independent of dead trees suggesting that seed dispersal and vegetative regeneration influenced the spatial patterning of Quercus trees. Betula seedlings and saplings were positively associated with both live and dead trees of conspecific adults at small scales (<5 m) but negatively associated with live and dead trees of other species indicating sprouting as an important mechanism of reproduction. Saplings of Acer had a strong spatial dependence on the distribution of conspecific adult trees indicating its limited seed dispersal range. Negative associations between adult trees of Betula and Quercus demonstrated interspecific competition at local scales (<5 m). Conclusions: Different regeneration strategies among the three species play an important role in regulating their spatial distribution patterns, while competition between individuals of Betula and Quercus at the adult stage also contributes to spatial patterning of these communities. The recruitment limitations of Betula and Quercus may affect the persistence of these species and the long‐term dynamics of the forest.  相似文献   

18.
In Neotropical humid forest, the majority of tree species have seeds dispersed by vertebrates. Seed deposition by vertebrates is often spatially aggregated and a low per capita survival for seeds and seedlings is predicted. However, mortality factors could be saturated by high densities. I evaluated whether recruitment of saplings of species dispersed by black and gold howlers (Alouatta caraya) in latrines is higher than at control sites: (1) below parent trees, (2) in trees not used by monkeys to sleep, (3) randomly chosen sites within the forest, and determined whether howlers may influence current floristic composition of the Paraná River flooded forest. I recorded saplings several years old in the territories of five monkey groups. In total, I found four times more saplings in latrines than in the other areas, and results suggest that latrines are recruitment foci for most species, though larger samples would be required to assess this for every species. Frequency distribution of the diameter of tallest saplings of more abundant species reflected recruitment over time. I found saplings of more species growing in latrines than outside of them. Saplings higher than 1 m of two species of laurels (Ocotea diospyrifolia and Nectandra megapotamica) and one species of Myrtaceae (Eugenia punicifolia) had higher densities in latrines than below parent trees. Results suggest that mortality factors were saturated in latrines and that sapling may grow at a higher rate in latrines. In relation to the influence on floristic composition E. burkartiana, an uncommon species in the forest, could increase in abundance as consequence of seed dispersal by howlers.  相似文献   

19.
Analysis of the seedling distribution of Erica arbórea and Arbutus unedo, two dominant plant species in the Corsican maquis, and of three tree species (Pinus mesogeensis, Quercus ilex and Quercus pubescens) with which they compete in a mosaic of successional habitats, has enabled the determination of the successional position of the two ericaceous species. Erica arbórea and Arbutus unedo are often considered to be pyro-phytes, but the distribution pattern of their seedlings, following either abandonment of cultivation or after fire, indicates that fire is unfavourable for their establishment. Field and laboratory studies of the germination of the two ericaceous species indicate that the absence of seedlings following fire is not due to the destruction of seeds by fire but due to the newly created environmental conditions. Erica arbórea invades sites abandoned after cultivation and has thus spread widely since the end ofthe last century. Arbutus unedo, the seeds of which are disseminated in bird droppings, has the ability to establish in denser vegetation, and thus appears to be a mid-successional species.  相似文献   

20.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号