首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of this study is to detect how vegetation development proceeds after Sphagnum-peat mining and how physical and chemical factors in groundwater are related to the revegetation patterns in Sarobetsu mire, Hokkaido, Japan. A total of 189 plots on peat-mining sites were set in a chronosequence and 18 plots were set on unmined control sites. A vegetation survey was conducted, and seasonal changes in groundwater levels and chemistry (pH, electrical conductance, total nitrogen, total phosphorus, anions, and cations) were monitored. Species richness and plot cover tended to increase with increasing age, but were significantly lower in mined sites than in unmined sites dominated by Sphagnum spp. The trends in vegetation change were (1) bare ground, (2) grasslands dominated by grasses and sedges, e.g., Rhyncohospora alba, Phragmites communis, and Moliniopsis japonica and (3) Sphagnum-dominated vegetation. The characteristics of groundwater level during the plant-growth period mostly determined vegetation recovery, i.e., Sphagnum establishment was promoted when groundwater declined greatly in early summer. The patterns of temporal vegetation changes affected by groundwater characteristics were detected by chronological sequence, and hydrological factors in groundwater were more important for revegetation than chemical factors. The original vegetation has not returned after three decades.  相似文献   

3.
水位梯度对湿地植物生长、繁殖和生物量分配的影响   总被引:46,自引:2,他引:46       下载免费PDF全文
本文考察了水位梯度对武夷慈姑(Sagitariawuyiensis)、小慈姑(S.potamogetifolia)、野荸荠(Eleocharisplantagineiformis)和锐棱荸荠(E.acutangula)植物幼苗生长、繁殖器官干重、生物量及其分配式样的影响。实验表明:植物高度、生物量及其分配对水位梯度的反应在种间有一定差异,而慈姑属植物的叶数、荸荠属植物的秆数、繁殖器官干重等对水位梯度处理的反应在种间有一定相似性。综合植物生物量和繁殖的反应特点,可以认为武夷慈姑和锐棱荸荠适宜生长在0~5cm水深处,小慈姑在20cm水深处生长较佳,而野荸荠适宜于0~20cm范围。结果提示:湿地植物的空间分布与其对水位反应的差异性有一定关系。  相似文献   

4.
Summary The effects of water regime on the performance of rice were investigated in a greenhouse experiment and two field experiments. The greenhouse experiment involved four water regimes (continuous flooding, and soil drying for 16 days — begun 2, 5, and 8 weeks after transplanting — followed by reflooding), four soils, and 0 and 100 mg N/kg. Soil drying raised the redox potentials of all soils beyond the aerobic threshold. Averaged for soils and N levels, yields from treatments in which soil drying was begun at 2 and 5 weeks after transplanting were lower than that from the continuously flooded treatment, but the simple effects of soil drying on yield and N uptake depended on the soil and the growth stage of the plant. None of the soil-drying treatments had adverse effects in the soil high in N but soil drying at 2 and 5 weeks after transplanting had adverse effects in the soil low in N. The field experiments tested the effects of three water regimes (continuous flooding, alternate drying and flooding every 2 weeks, and soil drying for 2 weeks at 6 weeks after transplanting following by reflooding), and 0, 50, 100, and 150 kg N/ha on a nearly neutral clay soil, during two seasons. None of the soil-drying treatments depressed growth, yield, or N uptake by rice at any level of N in either season. Nitrate was absent after drying, so denitrification was not possible on subsequent flooding. The adverse effects on yield of alternate flooding and drying, attributed to nitrification-denitrification, may be insignificant in wetland fields carrying an actively growing rice crop.  相似文献   

5.
以吉林莫莫格湿地常见植物三江藨草(Scirpus nipponicus Makino)为材料,设置6个盐浓度梯度和6个水位梯度进行室内控制实验,对三江藨草叶片的叶绿素含量和荧光参数进行测定,以探讨该植物在光合过程中对水盐条件变化的响应机制。结果显示:随着水位升高,叶绿素荧光参数均呈先增加后降低的趋势;在低水位范围(-10 ~ 20 cm)处理下,Fv/FoFv/FmqN值较高,而Yield、ETR和qP在高水位环境(40 ~ 80 cm)中较高。随着盐度的升高,三江藨草叶绿素含量和荧光参数均呈先增加后降低的趋势,即当盐浓度升高至3000 mg/L时,各指标含量下降。研究结果表明,三江藨草适宜生长在40 ~ 80 cm水位较高的环境中,具有一定的耐盐性,且高水位能够缓解盐胁迫对光合结构造成的伤害,提高其对盐环境的耐受性。  相似文献   

6.
Natural wetlands are the single most important contributors of methane (CH4) to the atmosphere. Recent research has shown that the deposition of sulfate (SO 4 2– ) can substantially reduce the emission of this radiatively important gas from wetlands. However, the influence of temperature in regulating the extent of this effect is unclear. Peatlands also constitute an important store of sulfur (S), so understanding the effect of S deposition on S dynamics within this store is important if we are to understand the interaction. The effect of enhanced SO 4 2– deposition on CH4 fluxes and S pools were investigated in peatland monoliths under controlled environment conditions. This enabled a close examination of effects at the onset of experimentally enhanced SO 4 2– deposition while examining temperature effects on the interaction. Experimentally enhanced S deposition at rates as small as 15 kg SO 4 2– -S ha–1 year–1 suppressed CH4 emissions by 30%. There was no increased suppression at larger deposition rates of simulated acid rain. Temperature affected the suppressive effect of the simulated acid rain. At low temperatures (down to 5 °C), there was a greater proportional suppression than at higher temperatures (up to 20 °C). Evidence suggests that populations of SO 4 2– -reducing bacteria do not respond, as previously thought, to enhanced SO 4 2– supply with a boom followed by a bust and less recalcitrant S pools (SO 4 2– and S°) were depleted in the SO 4 2– -treated peat, indicating enhanced S turnover. A significant proportion of the SO 4 2– from the treatment was taken up and stored as SO 4 2– in vascular plants, placing this mechanism as a potentially important seasonal regulator of peatland SO 4 2– availability.  相似文献   

7.
We used a P enrichment gradient in the Everglades to investigate patterns of the stable N isotopic ratio (δ15N) in peat profiles as an indicator of historic eutrophication of this wetland. We also tested two hypotheses to explain the effects of P on increased δ15N of organic matter including: (1) increased N mineralization/N loss, and (2) reduced isotopic discrimination during macrophyte N uptake. Spatial patterns of δ15N in surface litter and soil (0–10 cm) mimic those of the aboveground macrophytes (Typha domingensis Pers. and Cladium jamaicense Crantz). Peat profiles also show increased δ15N in the peat accumulated in areas near the historic P discharges since the early 1960s. The increased δ15N of bulk peat correlated well with both measured increases in soil total P and the historical beginning of nutrient discharges into this wetland. In 15-day bottle incubations of soil, added P had no effect on the δ15N of NH4+ and significantly increased the δ15N of water-extractable organic N. Measurements of surface soils collected during a field mesocosm experiment also revealed no significant effect of P on δ15N even after 5 years of P addition. In contrast, δ15N of leaf and root tissues of hydroponically grown Typha and Cladium were shown to increase up to 12‰ when grown at elevated levels of P and fixed levels of N (as NH4+). The magnitude of changes in δ15N resulting from altered discrimination during N uptake is significant compared with other mechanisms affecting plant δ15N, and suggests that this may be the dominant mechanism affecting δ15N of organic matter following P enrichment. The results of this study have implications for the interpretation of δ15N as an indicator of shifts in relative N limitation in wetland ecosystems, and also stress the importance of experimental validation in interpreting δ15N patterns.  相似文献   

8.
    
Seasonal changes in leaf population per area, nutrient absorption rate and elemental concentration of Menyanthes trifoliata L. were studied in a floating peat mat in Mizorogaike Pond, central Japan, with reference to the peat redox potential. Leaf population of M. trifoliata showed a rapid increase in May, reached the maximum in June, and then decreased to 12% of the maximum density in July. The foliage density of M. trifoliata again increased and reached its second maximum in September, and then it decreased to zero in December. The decrease of the foliage density from June to July corresponded to the minimum of redox potential (Eh) of the surface peat. Low Eh in the rhizosphere of M. trifoliata relates to the temporary disappearance of the foliage of the plant from June to July. Nutrient concentration (K, Mg, Ca, Fe) in M. trifoliata roots showed minimum in June to August. The nutrient absorption rate of M. trifoliata evaluated from the rubidium absorption rate of excised root of M. trifoliata showed a minimum value in June and July. Peat redox properties would affect the nutrient absorption activity of the roots and the consequent foliage phenology of M. trifoliata in Mizorogaike Pond.  相似文献   

9.
蚌湖湖滨带的土壤种子库特征   总被引:1,自引:0,他引:1  
采用幼苗萌发法,在湿润和淹水两种水位萌发条件下,研究了蚌湖(鄱阳湖子湖)湖滨带5个水位梯度区的土壤种子库特征。结果表明,种子库中共萌发了33个物种,分属15科29属。物种组成以一年生草本为主,其中莎草科、禾本科、菊科、玄参科和水鳖科的物种数最多。不同水位区种子库的物种组成和幼苗密度差异不显著。种子库在两种水位条件下萌发的结果有显著差异,湿润条件下种子库萌发的物种以湿生和挺水植物为主,而在淹水条件下萌发的沉水植物种类和幼苗数量显著增多,其幼苗密度占总幼苗数的36%。t检验表明种子库在淹水条件下每个萌发盒中萌发的物种数(7.2±2.8)显著多于湿润条件(4.2±2.0)。  相似文献   

10.
In this paper, we present concentrations of an array of major and trace elements (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Rb, Sb, Sc, Sr, Th, Tl, U, V, Zn) in living Sphagnum mosses from four southern German bogs and compare them with moss monitoring data of the respective regions. To do this, Sphagnum mosses were collected in Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year later, the annual moss production was harvested. Up to 12 samples (40 cm × 40 cm) were collected per site, and 6–10 sites investigated per bog. The concentrations of these elements were then determined in acid digests using sector field ICP-MS. Variations within a given sampling site were in the range of 2 to 3-fold for all major and trace element concentrations except for Mn (12-fold) and Tl (38-fold). For most of the elements, concentrations between bogs of a given region were significantly different and atmospheric deposition of particles seems to be considerably affected by local circumstances such as tree canopy interception and microtopography. Comparing trace element concentrations measured in Sphagnum mosses for 2007 with published moss monitoring data for 2005 resulted in a very good agreement for most elements. Clearly, Sphagnum mosses from bogs are useful biomonitors for estimating atmospheric contamination by metals. This supports the use of Sphagnum in atmospheric deposition monitoring especially in cases where Sphagnum is abundant (e.g., boreal forests). In regions with neither bogs nor forests, living Sphagnum moss bags could be used to the same effect.  相似文献   

11.
Wetlands are large carbon pools and play important roles in global carbon cycles as natural carbon sinks. This study analyzes the variation of total soil carbon with depth in two temperate (Ohio) and three tropical (humid and dry) wetlands in Costa Rica and compares their total soil C pool to determine C accumulation in wetland soils. The temperate wetlands had significantly greater (P < 0.01) C pools (17.6 kg C m−2) than did the wetlands located in tropical climates (9.7 kg C m−2) in the top 24 cm of soil. Carbon profiles showed a rapid decrease of concentrations with soil depth in the tropical sites, whereas in the temperate wetlands they tended to increase with depth, up to a maximum at 18–24 cm, after which they started decreasing. The two wetlands in Ohio had about ten times the mean total C concentration of adjacent upland soils (e.g., 161 g C kg−1 were measured in a central Ohio isolated forested wetland, and 17 g C kg−1 in an adjacent upland site), and their soil C pools were significantly higher (P < 0.01). Among the five wetland study sites, three main wetland types were identified – isolated forested, riverine flow-through, and slow-flow slough. In the top 24 cm of soil, isolated forested wetlands had the greatest pool (10.8 kg C m−2), significantly higher (P < 0.05) than the other two types (7.9 kg C m−2 in the riverine flow-though wetlands and 8.0 kg C m−2 in a slowly flowing slough), indicating that the type of organic matter entering into the system and the type of wetland may be key factors in defining its soil C pool. A riverine flow-through wetland in Ohio showed a significantly higher C pool (P < 0.05) in the permanently flooded location (18.5 kg C m−2) than in the edge location with fluctuating hydrology, where the soil is intermittently flooded (14.6 kg C m−2).  相似文献   

12.
Application of soil microcosms has largely improved our understanding in biogeochemical processes, because all major environmental factors can be independently controlled. Recent advancement to improve the performance of soil microcosm has been made. The modifications include using a different incubation vessel and cap, replacing a magnetic stirrer with an overhead stirrer, providing temperature control for the microcosm, using data logger for continuous measurements of redox potential (Eh), pH and temperature, and applying automatic gas analysis. The modifications can be made in any combination to suit an individual's needs and budget.  相似文献   

13.
    
《Flora》2014,209(5-6):279-284
Plants around ponds, rivers and lakes are subjected to long-term partial or complete submergence. When they are flooded, water level affects the plants simultaneously with duration of submergence. Separate and interactive effects of water level and duration on the growth of the herbaceous perennial Zizania latifolia (Poaceae) were investigated by exposing the plants in greenhouse water tanks to submergence in different water depths and for different time-spans. The plants exhibited great shoot elongation upon submergence and prolonged flood duration, and the basal tiller number of the species decreased with higher water levels. Submergence treatment advanced the flowering date and increased the inflorescence number. Plant total biomass did not differ among all the treatments, while the root:shoot ratio decreased with increased water level, prolonged duration of submergence and their interaction. The high plasticity in morphology and shifts in reproductive strategy and biomass allocation enabled the Zizania plants to survive the compound effect of flooding height and duration. This may explain the occurrence of this species in habitats subjected to long-term flooding. The results obtained in this experiment will contribute to understanding the impact of flooding dynamics on plants and the ways of adaptation responses to prolonged waterlogging.  相似文献   

14.
Methane emissions from freshwater riverine wetlands   总被引:1,自引:0,他引:1  
To better understand methane emissions from freshwater riverine wetlands, seasonal and spatial patterns of methane emissions were measured over a 1-year period from created freshwater marshes and a river division oxbow, and at a river-floodplain edge (riverside) in central Ohio, USA. Plots were distributed from inflow to outflow and from shallow transition edges to deep water zones in the marshes and oxbow. Median values of CH4 emissions ranged from 0.33 to 85.7 mg-CH4-C m−2 h−1, at the riverside sites and 0.02-20.5 mg CH4-C m−2 h−1 in the created marshes. The naturally colonizing marsh had more methane emissions (p = 0.047) than did the planted marsh, probably due to a history of higher net primary productivity in the former. A significant dry period and lower productivity in the oxbow may explain its low range of methane emissions of −0.04 to 0.09 mg CH4-C m−2 h−1. There were significantly higher rates of methane emissions in deep water zones compared to transition zones in the created marshes. Overall CH4 emissions had significant relationships with organic carbon and soil temperature and appear to depend on the hydroperiod and vegetation development. Riparian wetlands can be designed to minimize greenhouse gas emissions while providing other ecosystem services.  相似文献   

15.
The objective of this work was to study the effect of plant presence (Phragmites australis) and inoculant origin on wetland mesocosm start-up dynamics. Eight mesocosms were studied based on a duplicated 22 factorial design tracking bacterial community and hydrological changes during an 8 month start-up period. The mesocosms were characterized in terms of their hydrological character based on evapotranspiration (ET), porosity, and a dispersion coefficient. The microbiological regime was characterized using a microbial activity measure and community-level physiological profiling (CLPP) employing BIOLOG™ ECO plates. CLPP-related indices such as substrate richness, substrate diversity, over-all community profile, and community divergence are also presented. It was found that mesocosm porosities decreased over time as a result of media-related biofilm development. This biofilm development also contributed to a substantial increase in the dispersion coefficient in the mesocosms over the start-up period. Dispersion coefficients in planted systems reached values of ∼50-55 cm2/min whereas in the unplanted systems values of ∼30-35 cm2/min were observed. Bacterial community divergence in the mesocosms was quantified using a Euclidean-based divergence metric. All mesocosms showed a sharp increase in community divergence until day 75, at which point a steady state was reached. The interstitial communities were also characterized in terms of similarity based on the experimental design treatments. Four stages of mesocosm development were identified that can be described by an initial community state based on the origins of the initial inoculum [days 0-6]; a dynamic period where adjustments and shifts in the bacterial community occurred in all mesocosms [days 7-26]; a period where all interstitial CLPPs were quite similar [days 27-73]; and finally a shift towards unplanted and planted mesocosm CLPP groupings [days 74-232].  相似文献   

16.
From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70 km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10 cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging.  相似文献   

17.
The requirement to mitigate impacts to wetlands and streams is a frequently misunderstood policy with a long and complicated history. We narrate the history of mitigation since the inception of the Clean Water Act Section 404 permit program in 1972, through struggles between the US Environmental Protection Agency and the US Army Corps of Engineers, through the emerging importance of wetland conservation on the American political landscape, and through the rise of market-based approaches to environmental policy. Mitigation, as it is understood today, was not initially foreseen as a component of the Section 404 permitting program, but was adapted from 1978 regulations issued by the Council on Environmental Quality as a way of replacing the functions of filled wetlands where permit denials were unlikely. EPA and the Corps agreed in 1990 to define mitigation as the three steps of avoidance, minimization, and compensation, principles which must be applied to permit decisions in the form of the environmental criteria in EPA’s 404(b)(1) Guidelines. Through the 1980s and 1990s, the compensation component of mitigation has become nearly the sole focus of mitigation policy development, and has been the subject of numerous guidance documents and memoranda since 1990. Avoidance and minimization have received far less policy attention, and this lack of policy development may represent a missed opportunity to implement effective wetland conservation.
Morgan RobertsonEmail:
  相似文献   

18.
    
Questions: Does succession of rewetted species‐poor fen grasslands display similar trends when different water levels, sites and regions are compared? Will restoration targets as peat growth and waterfowl diversity be reached? Location: Valley fen of the river Peene (NE‐Germany) and the Hanság fen (Lake Neusiedler See, NW‐Hungary). Methods: Analysis of permanent plot data and vegetation maps over a period of up to seven years of rewetting. The general relations between newly adjusted water levels and changes in dominance of helophytic key species during early succession are analysed considering four rewetting intensities (water level classes) and eight vegetation types (Phalaris arundinacea type, Carex type, Glyceria maxima type, Phragmites australis type, Typha type, aquatic vegetation type, open water type and miscellaneous type). Results: The initial period of balancing the site conditions and vegetation is characterised by specific vegetation types and related horizontal vegetation structures. Most vegetation types displayed similar trends within the same water level class when different sites and regions were compared. A significant spread of potentially peat forming vegetation with dominance of Carex spp. or Phragmites as desired goal of restoration was predominantly restricted to long‐term shallow inundated sites (water level median in winter: 0–30 cm above surface). Open water patches as bird habitats persisted mainly at permanent inundated sites (water level median in winter > 60 cm above surface). Conclusions: Site hydrology appeared as a main force of secondary succession. Thus the rewetting intensity and restoration targets have to be balanced adequately.  相似文献   

19.
The boundary filtration effect of land/water ecotones with reed-bed/ditch systems under water level fluctuations was studied in Baiyangdian Lake of North China. It was found that the changes in reed bed areas which were primarily affected by water level fluctuations and the root channels in the wetland soils together largely determined boundary filtration efficiency. The ecotones displayed the greatest boundary effect at a moderate water level of about 8 m above sea level. The massive root channels in the wetland soils promoted water flowing into the reed beds as far as 8 m horizontally by subsurface in wet years. In dry years, when the water level was below the root channel distribution zone, the lateral water exchange width of ecotones was limited to 0.5 m along the fringe area. It is calculated that, at 8 m water level, the total boundary length of ecotones is 7,273 km and the boundary exchange volume is 5.8 × 106 m3. While at 6.5 m water level, the total boundary length of ecotones is reduced to 2,699 km and the boundary exchange volume is 1.1 × 105 m3. The standard capacity for phosphorus retention was 105.9 and 2.5 tonnes at water levels of 8 and 6.5 m, respectively. This suggests that the boundary filtration effect of reed-bed/ditch wetlands is important for improving the water quality of inland waters, and this effect should be considered in regulating and managing lake water levels.  相似文献   

20.
Revegetation of peat excavations in a derelict raised bog   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号