首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To evaluate the biodegradability of 2,4‐DNT using an anaerobic filter (AF) combined with a biological aerated filter (BAF), and elucidate the degradation mechanism of 2,4‐DNT and analyze the bacterial community of the reactors over a long period of operation. Methods and Results: The pilot test experienced wide fluctuations influent concentrations and there was lower than 0.50 mg l?1 of 2,4‐DNT in the effluent of the system. The removal efficiency was above 99%. GC‐MS analysis demonstrated that 2,4‐DNT was mainly reduced to 2‐amino‐4‐nitrotoluene (2‐A‐4‐NT), 4‐amino‐2‐nitrotoluene (4‐A‐2‐NT), and 2,4‐diaminotoluene (2,4‐DAT) during the anaerobic reaction. In addition, ethanol was added into the influent as the electron donor. Because of the use of part ethanol as an auxiliary carbon source, more than twice the theoretical requirement of ethanol was needed to achieve a high 2,4‐DNT removal efficiency (>93%). ESEM observations showed that the carrier could immobilize micro‐organisms, which flourished more in reactors operating over longer periods. Further research by PCR‐DGGE revealed that new 2,4‐DNT‐resistant bacterial had been generated during the stress of 2,4‐DNT for 150 days. The dominant species for 2,4‐DNT degradation were identified by a comparison with gene sequences in GenBank. Conclusions: 2,4‐DNT could be effectively degraded by the combined process and ethanol played an important role in the biotransformation. The proposed transformation pathway of 2,4‐DNT was concluded. During the 150‐day operation, some microbial taxa unaccustomed to 2,4‐DNT died out and some new 2,4‐DNT‐resistant microbial taxa appeared. Significance and Impact of the Study: The study provides a novel method for the bioremediation of 2,4‐DNT, which is difficult to degrade by traditional biological methods. The most 2,4‐DNT‐resistant microbial taxa have not been reported elsewhere and they may be helpful to the treatment of actual 2,4‐DNT wastewater.  相似文献   

2.
Three methods, i.e. bioremediation by application of bacteria-laden agar, physical absorption of DNT by agar, or illumination by UV light were evaluated for the removal of 2,4-dinitrotoluene (DNT) from building-grade concrete. DNT biodegradation by Pseudomonas putida TOD was turned "on" and "off" by using toluene as a co-substrate thus allowing for rate-limiting step assessment. Bioremediation efficiency can be > 95-97% in 5-7 d if the process occurs at optimum growth temperature with the biological processes appearing to be rate-limiting. Sterile agar can remove up to 80% of DNT from concrete thus allowing DNT desorption and biodegradation to be conducted separately. Photoremediation results in 50% DNT removal in 9-12 d with no further removal, most likely due to mass transfer limitations.  相似文献   

3.
We previously reported on the mineralization of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in an aerobic fluidized-bed bioreactor (FBBR) (Lendenmann et al. 1998 Environ Sci Technol 32:82-87). The current study examines the kinetics of 2, 4-DNT and 2,6-DNT mineralization at increasing loading rates in the FBBR with the goal of obtaining system-independent kinetic parameters. At each steady state, the FBBR was subjected to a set of transient load experiments in which substrate flux in the biofilm and bulk substrate concentrations were measured. The pseudo-steady-state data were used to estimate the biokinetic parameters for 2,4-DNT and 2,6-DNT removal using a mechanistic mathematical biofilm model and a routine that minimized the sum of the squared residuals (RSS). Estimated kinetic parameters varied slightly for each steady-state; retrieved parameters for qm were 0. 83 to 0.98 g DNT/g XCOD d for 2,4-DNT removal and 0.14 to 0.33 g DNT/g XCOD d for 2,6-DNT removal. Ks values for 2,4-DNT removal (0. 029 to 0.36 g DNT/m3) were consistently lower than Ks values for 2, 6-DNT removal (0.21 to 0.84 g DNT/m3). A new approach was introduced to estimate the fundamental biofilm kinetic parameter S*b,min from steady-state performance information. Values of S*b,min indicated that the FBBR performance was limited by growth potential. Adequate performance of the examined FBBR technology at higher loading rates will depend on an improvement in the growth potential. The obtained kinetic parameters, qm, Ks, and S*b,min, can be used to aid in the design of aerobic FBBRs treating waters containing DNT mixtures.  相似文献   

4.
2,4-Dinitroanisole (DNAN) is a low sensitive melt-cast chemical being tested by the Military Industry as a replacement for 2,4,6-trinitrotoluene (TNT) in explosive formulations. Little is known about the fate of DNAN and its transformation products in the natural environment. Here we report aerobic biotransformation of DNAN in artificially contaminated soil microcosms. DNAN was completely transformed in 8 days in soil slurries supplemented with carbon and nitrogen sources. DNAN was completely transformed in 34 days in slurries supplemented with carbons alone and persisted in unamended microcosms. A strain of Bacillus (named 13G) that transformed DNAN by co-metabolism was isolated from the soil. HPLC and LC–MS analyses of cell-free and resting cell assays of Bacillus 13G with DNAN showed the formation of 2-amino-4-nitroanisole as the major end-product via the intermediary formation of the arylnitroso (ArNO) and arylhydroxylamino (ArNHOH) derivatives, indicating regioselective reduction of the ortho-nitro group. A series of secondary reactions involving ArNO and ArNHOH gave the corresponding azoxy- and azo-dimers. Acetylated and demethylated products were identified. Overall, this paper provides the evidence of fast DNAN transformation by the indigenous microbial populations of an amended soil with no history of contamination with explosives and a first insight into the aerobic metabolism of DNAN by the soil isolate Bacillus 13G.  相似文献   

5.
Expression of vgb, encoding Vitreoscilla hemoglobin (VHb), in Burkholderia strain YV1 was previously shown to improve cell growth and enhance 2,4-dinitrotoluene (2,4-DNT) degradation compared with control strain DNT, especially under hypoxic conditions. In the work reported here, the ratio of 2,4-DNT degraded to oxygen uptake was approximately 5-fold larger for strain YV1 than for strain DNT. The addition of purified VHb to cytosolic fractions of strain DNT increased 2,4-DNT degradation 1.5-fold, compared with 1.1-fold for control bovine Hb, but increased the 2,4-DNT degradation 2.7-fold when added to partially purified 2,4-DNT dioxygenase, compared with 1.3-fold for bovine Hb. This suggests a direct transfer of oxygen from VHb to the oxygenase. In a bioreactor at high 2,4-DNT concentration (using 100 ml oleyl alcohol containing 2 g 2,4-DNT as the second phase) with 1.5 l culture, both strains could remove 0.8 g 2,4-DNT by 120 h; and, under the same conditions in a fed-batch reactor, the degradation increased to 1 g for strain YV1 but not for strain DNT.  相似文献   

6.
Keynote Address at the Annual Meeting of the Society for Industrial Microbiology, San Diego, August 1992.  相似文献   

7.
As the use of the insensitive munition compound 2,4‐dinitroanisole (DNAN) increases, releases to the environment may pose a threat to local ecosystems. Little is known about the environmental fate of DNAN and the conversions caused by microbial activity. We studied DNAN biotransformation rates in sludge under aerobic, microaerophilic, and anaerobic conditions, detected biotransformation products, and elucidated their chemical structures. The biotransformation of DNAN was most rapid under anaerobic conditions with H2 as a cosubstrate. The results showed that the ortho nitro group in DNAN is regioselectively reduced to yield 2‐methoxy‐5‐nitroaniline (MENA), and then the para nitro group is reduced to give 2,4‐diaminoanisole (DAAN). Both MENA and DAAN were identified as important metabolites in all redox conditions. Azo and hydrazine dimer derivatives formed from the coupling of DNAN reduction products in anaerobic conditions. Secondary pathways included acetylation and methylation of amine moieties, as well as the stepwise O‐demethylation and dehydroxylation of methoxy groups. Seven unique metabolites were identified which enabled elucidation of biotransformation pathways. The results taken as a whole suggest that reductive biotransformation is an important fate of DNAN leading to the formation of aromatic amines as well as azo and hydrazine dimeric metabolites. Biotechnol. Bioeng. 2013; 110: 1595–1604. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The bactericidal effect of photocatalysis with TiO2 is well recognized, although its mode of action is still poorly characterized. It may involve oxidation, as illuminated TiO2 generates reactive oxygen species. Here we analyze the bactericidal effect of illuminated TiO2 in NaCl-KCl or sodium phosphate solutions. We found that adsorption of bacteria on the catalyst occurred immediately in NaCl-KCl solution, whereas it was delayed in the sodium phosphate solution. We also show that the rate of adsorption of cells onto TiO2 is positively correlated with its bactericidal effect. Importantly, adsorption was consistently associated with a reduction or loss of bacterial membrane integrity, as revealed by flow cytometry. Our work suggests that adsorption of cells onto aggregated TiO2, followed by loss of membrane integrity, is key to the bactericidal effect of photocatalysis.  相似文献   

9.
Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation   总被引:2,自引:0,他引:2  
Phytoalexins play a significant role in the defense response of plants. These secondary metabolites, which are synthesized de novo in response to diverse forms of stress, including fungal infection, are part of the plants' chemical and biochemical defense mechanisms. Phytoalexins from crucifers are structurally and biogenetically related, but display significantly different biological activities. Here, we review work reporting the chemical structures, synthesis, biosynthesis and metabolism of cruciferous phytoalexins, as well as their biological activity towards different microorganisms.  相似文献   

10.
A novel acetone-butanol production process was developed which integrates a repeated fed-batch fermentation with continuous product removal and cell recycle. The inhibitory product concentrations of the fermentation by Clostridium acetobutylicum were reduced by the simultaneous extraction process using polyvinylpyridine (PVP) as an adsorbent. Because of the reduced inhibition effect, a higher specific cell growth rate and thus a higher product formation rate was achieved. The cell recycle using membrane separation increased the total cell mass density and, therefore, enhanced the reactor productivity. The repeated fed-batchoperation overcame the drawbacks typically associated with a batch operation such as down times, long lag period, and the limitation on the maximum initial substrate concentration allowed due to the substrate inhibition. Unlike a continuous operation, the repeated fed-batch operation could beoperated for a long time at a relatively higher substrate concentration without sacrificing the substrate loss in the effluent. As a result, the integrated process reached 47.2 g/L in the equivalent solvent concentration (including acetone, butanol, and ethanol) and 1.69 g/L . h in the fermentor productivity, on average, over a 239.5-h period. Compared with a controlled traditional batch acetone-butanol fermentation, the equivalent solvent concentration and the tormentor productivity were increased by 140% and 320%, respectively. (c) 1995 John Wiley & Sons Inc.  相似文献   

11.
An in situ product adsorption technique was used to enhance the biotransformation of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae BD. As a suitable adsorbent, the non-polar macroporous resin D101, selected from several resins tested, showed high adsorption capacity for 2-phenylethanol but not l-phenylalanine. Product inhibition was effectively alleviated by the addition of macroporous resin D101 to the biotransformation medium. When 2 g of hydrated resin D101 was added to 30 mL of the biotransformation medium, the total 2-phenylethanol concentration achieved was 6.17 g/L, of which 3.15 g/L remained in the aqueous phase and 3.02 g/L was adsorbed onto the resin. The molar yield of 2-phenylethanol reached 0.70 after 24 h cultivation. Addition of the macroporous resin greatly increased the volumetric productivity of 2-phenylethanol, and made the downstream processing more feasible and easier to perform in an industrial application.  相似文献   

12.
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.  相似文献   

13.
Liver is the most important organ involved in biotransformation of xenobiotics. Within the main organisational unit, the hepatocyte, is an assembly of enzymes commonly classified as phase I and phase II enzymes. The phase I enzymes principally cytochrome P450 catalyse both oxidative and reductive reactions of a bewildering number of xenobiotics. Many of the products of phase I enzymes become substrates for the phase II enzymes, which catalyse conjugation reactions making use of endogenous cofactors. As xenobiotic metabolising enzymes are responsible for the toxicity of many chemicals and drugs, testing the role of the biotransformation enzymes and the transporters within the hepatocyte is critical. New methodologies may be able to provide information to allow for better in vitro to in vivo extrapolation of data.  相似文献   

14.
Destruxins, secondary metabolites first reported in 1961, are cyclic hexadepsipeptides composed of an alpha-hydroxy acid and five amino acid residues. The name "destruxin" is derived from "destructor" from the species Oospora destructor, the entomopathogenic fungus from which these metabolites were first isolated. Individual destruxins differ on the hydroxy acid, N-methylation, and R group of the amino acid residues; where established, the configurations of the amino acid residues are S, and those of the hydroxy acids are R. Destruxins exhibit a wide variety of biological activities, but are best known for their insecticidal and phytotoxic activities. The great interest in destruxins derives from their potential role as virulence factors in fungi, whether such microorganisms are useful insect biocontrol agents or detrimental, causing great plant disease epidemics. Reports on isolation, chemical structure determination, total synthesis, transformation by diverse organisms, and biological activity of destruxins and related metabolites are reviewed for the first time.  相似文献   

15.
Laera G  Chong MN  Jin B  Lopez A 《Bioresource technology》2011,102(13):7012-7015
This paper aims to demonstrate that integrating biological process and photocatalytic oxidation in a system operated in recycling mode can be a promising technology to treat pharmaceutical wastewater characterized by simultaneous presence of biodegradable and refractory/inhibitory compounds. A lab-scale system integrating a membrane bioreactor (MBR) and a TiO2 slurry photoreactor was fed on simulated wastewater containing 10 mg/L of the refractory drug Carbamazepine (CBZ). Majority of chemical oxygen demand (COD) was removed by the MBR, while the photocatalytic oxidation was capable to degrade CBZ. CBZ degradation kinetics and its impacts on the biological process were studied. The adoption of a recycling ratio of 4:1 resulted in removal of up to 95% of CBZ. Effluent COD reduction, sludge yield increase and respirometric tests suggested that the oxidation products were mostly biodegradable and not inhibiting the microbial activity. These results evidenced the advantages of the proposed approach for treating pharmaceutical wastewater and similar industrial effluents.  相似文献   

16.
Goldfarb T  Alani E 《Genetics》2005,169(2):563-574
The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations that disrupt Sgs1p helicase activity, Msh2p-Msh6p mismatch recognition, and ATP binding and hydrolysis activities for their effect on preventing recombination between divergent DNA sequences (heteroduplex rejection) during SSA. The results support a model in which the Msh proteins act with Sgs1p to unwind DNA recombination intermediates containing mismatches. Importantly, msh2 mutants that displayed separation-of-function phenotypes with respect to nonhomologous tail removal during SSA and heteroduplex rejection were characterized. These studies suggest that nonhomologous tail removal is a separate function of Msh proteins that is likely to involve a distinct DNA binding activity. The involvement of Sgs1p in heteroduplex rejection but not nonhomologous tail removal further illustrates that subsets of MMR proteins collaborate with factors in different DNA repair pathways to maintain genome stability.  相似文献   

17.
The data on discovery, biosynthesis and distribution of alcoxylipids in different kingdoms of the organic world, their physiologic role and biologic action are given. A conception of possible abiotic synthesis of alcoxylipids on the early stages of the Earth evolution and the ways of their biotransformation is considered. The first biologic membranes are suggested to contain primarily alcoxylipids. During the appearing of photosynthetic mechanism and its improving the alcoxylipids of biomembranes oxidized in plasmalogens and then into diacyl lipids. The possibilities to use alcoxylipids as chemical makers of biomembranes for chemotaxonomy are under discussion.  相似文献   

18.
The substrate range of 2,4-dinitrotoluene (DNT) dioxygenase was investigated by measuring substrate-dependent O2 uptake and maximum growth (expressed in A600) on substrate-containing minimal medium. The control for each strain had no added particular substrate. The following aromatic compounds: catechol, α-naphthalene acetic acid, β-dimethylaminobenzaldehyde, 3,4-dinitrosalicylic acid, p-nitrophenol, naphthanol, o-anisic acid, salicylic acid, toluene, and benzoic acid, were tried as possible substrates. Considering all substrates used, only p-nitrophenol showed zero oxygen uptake rate and zero growth. This indicates that it was rather unlikely that p-nitrophenol is a substrate analog for 2,4-DNT. Catechol was clearly used as a sole carbon source by both wild-type Escherichia. coli (JM103) and the dnt transformant (JS39). Using α-naphthalene acetic acid and β-dimethylaminobenzaldehyde as substrates resulted in DNT dioxygenase oxygen uptake rates of 11.8 and 14?μM/hr/mg protein, respectively. However, using both compounds as a carbon source, JS39 had twice the growth rate of E. coli JM103. For the remaining six substrates tested (3, 4-dinitrosalicylic acid, p-nitrophenol, o-anisic acid, salicylic acid, toluene, and benzoic acid), there appeared to be growth advantages for JS39 (even though the growth in the presence of substrate was less than the controls) suggesting a situation similar to that described for α-naphthalene and β-dimethylaminobenzaldehyde above. Combining results from our assay with respirometry and growth-based experiments will allow a better understanding of the biochemical consequences of these interactions. These results suggest that DNT dioxygenase gene, dntA carried by JS39, and those potential genes for substrates-degraded enzyme(s) system could have a common root.  相似文献   

19.
Biotransformation of 1,3-dichloro-2-propanol (DCP) to epichlorohydrin (ECH) by the whole cells of recombinant Escherichia coli expressing halohydrin dehalogenase was limited by product inhibition. To solve this problem and improve the ECH yield, a biotransformation strategy using resin-based in situ product removal (ISPR) was investigated. Seven macroporous resins were examined to adsorb ECH: resin HZD-9 was the best. When 10 % (w/v) HZD-9 was added to batch biotransformation, 53.3 mM ECH was obtained with a molar yield of 88.3 %. The supplement of the HZD-9 increased the ECH volumetric productivity from 0.5 to 2.8 mmol/l min compared to without addition of resin. In fed-batch biotransformation, this approach increased ECH from 31 to 87 mM. These results provide a promising basis for the biosynthesis of ECH.  相似文献   

20.

Background

All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina.

Scope of review

This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases.

Major conclusions

Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development.

General significance

Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号