首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Welsh 《Stain technology》1977,52(5):261-264
A procedure is described in which gallein, mordant violet 25, C.I. 45445, is used to demonstrate myelinated nerve fibers in animal brain. Specimens are fixed in 10% neutral buffered formalin and processed in a routine manner. Microsections are stained in an iron gallein solution with subsequent differentiation in 0.25% oxalic acid and 0.1% sodium carbonate solutions that avoid overdifferentiation. Methyl green is used to demonstrate other tissue elements. Myelin is stained deep violet, as are erythrocytes, with neuronal cell bodies and microglia shades of green. The staining procedure requires 30 minutes.  相似文献   

2.
Cryptosporidium parvum and Isospora belli oocysts stained with carbol–fuchsin, as in a modified Ziehl–Neelsen technique, fluoresce bright red under green light (546 nm). Cryptosporidium oocysts tend to fluoresce more brightly the less intensely stained they appear under transmitted light; this is not the case with Isospora. Fuchsin-stained Cyclospora cayetanensis oocysts fluoresce rather dimly, but those not taking the dye retain their typical autofluorescence. Cryptosporidium and Isospora oocysts are also autofluorescent, appearing violet under u.v. light (365 nm), and green under violet (405 nm) and blue–violet light (436 nm). Their autofluorescence does not survive the staining procedure.  相似文献   

3.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration, sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections are counterstained with a variant of Van Gieson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff's elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

4.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration. sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections am counterstained with a variant of Van Girson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff s elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

5.
Semithin sections of buccal and palatal mucosa fixed in 2.5% glutaraldehvde followed by 1% osmium and embedded in Durcupan (an araldite-baaed resin) were stained with 2% malachite green in 50% ethanol at 80 C and poststained in 0.05% crystal violet in Sorensen's phosphate buffer (pH 6.4) at 45 C Nuclear envelopes and chromatin stain vivid purple in contrast to the surrounding green cytoplasm and cell borders. Chromosomes of dividing cells stain bluish violet. Nucleoli, depending on their level in the epithelium, stain differing shades of greenish blue. The distinct and differential staining of each of these components facilitates recognition of mitoses in oral epithelium, where the small sice and crowding of cells in the proliferative compartment renders more conventional stains for plastic sections inadequate.  相似文献   

6.
Semithin sections of buccal and palatal mucosa fixed in 2.5% glutaraldehyde followed by 1% osmium and embedded in Durcupan (an araldite-based resin) were stained with 2% malachite green in 50% ethanol at 80 C and poststained in 0.05% crystal violet in Sorensen's phosphate buffer (pH 6.4) at 45 C. Nuclear envelopes and chromatin stain vivid purple in contrast to the surrounding green cytoplasm and cell borders. Chromosomes of dividing cells stain bluish violet. Nucleoli, depending on their level in the epithelium, stain differing shades of greenish blue. The distinct and differential staining of each of these components facilitates recognition of mitoses in oral epithelium, where the small size and crowding of cells in the proliferative compartment renders more conventional stains for plastic sections inadequate.  相似文献   

7.
Apposition of cementum occurs in phases resulting in two types of layers with different optical and staining properties that can be observed by light microscopy. Narrow, dark staining incremental lines are separated by wider bands of pale staining cementum. The distance from one line to the next represents a yearly increment deposit of cementum in many mammals, and counting these lines has been used routinely to estimate the age of the animals. Incremental lines in cementum have also been observed in sections of human teeth, and the object of the present investigation was to examine a number of methods for preparing and staining them for counting. Longitudinal and transverse sections, either ground or decalcified, were cut from formalin fixed human dental roots, paraffin embedded or frozen, and stained using several techniques. The cementum was investigated using conventional light, fluorescence, polarized light, confocal laser scanning, interference contrast, phase contrast, and scanning electron microscopy. Incremental lines in the cementum could be observed in ground sections and, following decalcification, in both frozen and paraffin embedded sections. Toluidine blue, cresyl violet, hematoxylin, or periodic acid Schiff (PAS) stained incremental lines allowing differentiation by conventional light microscopy. Contrast was best using fluorescence microscopy and excitation by green light since the stained cemental bands, but not the incremental lines, fluoresced after staining with cresyl violet, PAS or hematoxylin and eosin. The results with other microscopic techniques were unsatisfactory. Since incremental lines are not destroyed by acids and stain differently than the remaining cementum, it is likely that they possess an organic structure which differs from the cementum. Incremental lines in human dental cementum could be observed best using decalcified sections stained with cresyl violet excited by green light.  相似文献   

8.
Tissue fixed in 10% formalin, formol saline, CaCO3 or phosphate buffer neutralized formalin, Baker's formol calcium, Cajal's formol ammonium bromide, formalin-95% ethanol 1:9, formalin-methanol 1:9, Lillie's methanol-chloroform or Salthouse's formol cetyltrimethylammonium bromide was dehydrated and embedded in paraffin. Sections were attached to slides with either albumen or gelatine adhesive and processed throughout at room temperature of 22-25 C. Mordanting 30-60 min in 1% iron alum was followed by a 10 min wash in 4 changes of distilled water. Myelin was stained in a gallocyanin self-differentiating solution for 1-2.5 hr; thick sections requiring the longer time. The staining solution (pH approximately 7.4) consisted of Na2CO3, 90 mg; distilled water, 100 ml; gallocyanin, 250 mg; and ethanol, 5 ml. The ethanol was added to this mixture last, and after the other ingredients had been boiled and then cooled to room temperature. After a staining and thorough washing, Nissl granules were stained for 5-10 min in a solution consisting of: 0.1 M acetic acid, 60 ml; 0.1 M sodium acetate, 40 ml; methyl green, 500 mg. Washing, dehydration, clearing and mounting completed the process. Myelin sheaths were stained dark violet; neuronal nuclei, light green with dark granules of chromatin; nucleoli of motor cells and erythrocytes, dark violet; cytoplasm, green with dark green Nissl granules. The simple and reliable method can be adapted easily for use with automatic tissue processors.  相似文献   

9.
E Adams 《Stain technology》1975,50(4):227-231
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuschsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal violet-stained organisms with alcoholic safranin (0.25%) for 15 sec will distinguish Gram-positive bacteria (violet) from Gram-negative bacteria (pink). Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily decolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

10.
The cresyl fast violet staining method was modified to eliminate differentiation. Paraffin sections from tissues fixed in Zenker-formol were stained in a 1% aqueous solution of cresyl fast violet (Chroma), adjusted to pH 3.7 with acetic acid, washed in running tap water, dehydrated and covered. Because basophilia increases with time of fixation or storage in formalin or Kaiserling's fluid, dilution of the dye solution to 0.5-0.1% is recommended for such material. Bacteria, nuclei, Nissl substance, and lipofuscin were colored dark blue; fungi, blue to purple; and cytoplasm and muscle fibers, light blue. Collagen and reticulum fibers were only faintly stained. Thus, microorganisms were easily visible against the lightly colored background. In formalin-fixed material, bile pigment was colored olive green. Because this method does not require differentiation, it gave uniform results even in the hands of different users. Little or no fading was observed in sections stored for more than 2 yr.  相似文献   

11.
A polyacid-dependent dichrome has been devised which will differentiate epithelial from mesenchymal cells in young dividing primary cultures. Epithelial cells and colonies and nuclei are stained with metanil yellow, the stain is fixed and differentiated with phosphotungstic acid, and the mesenchymal elements are stained with toluidine blue. Several other dyes are tested for substitution in this method. Biebrich scarlet and aniline blue could be substituted for the metanil yellow; Bismarck brown T, Janus green B, crystal violet, and neutral red could be substituted for the basic dye.  相似文献   

12.
We describe here a new method for specific staining of mast cells using ferroin. Different hamster tissues were fixed in 4% formalin and processed for paraffin embedding. Sections were stained with hematoxylin followed by ferroin acidified with 2.5 N sulfuric acid to pH 4.0. Mast cells stained an intense orange color that contrasted markedly with bluish violet nuclei. High contrast was also observed when ferroin colored sections were counterstained with light green instead of hematoxylin. To evaluate the specificity of the stain, hamster cheek pouch sections were stained with toluidine blue, alcian blue-safranin O, and ferroin. Quantitative evaluation of mast cells stained with the three techniques showed no statistical difference. The simplicity and selectivity of this method is sufficient for image analysis of mast cells.  相似文献   

13.
A polyacid-dependent dichrome has been devised which will differentiate epithelial from mesenchymal cells in young dividing primary cultures. Epithelial cells and colonies and nuclei are stained with metanil yellow, the stain is fixed and differentiated with phosphotungstic acid, and the mesenchymal elements are stained with toluidine blue. Several other dyes are tested for substitution in this method. Biebrich scarlet and aniline blue could be substituted for the metanil yellow; Bismarck brown T, Janus green B, crystal violet, and neutral red could be substituted for the basic dye.  相似文献   

14.
We describe here a new method for specific staining of mast cells using ferroin. Different hamster tissues were fixed in 4% formalin and processed for paraffin embedding. Sections were stained with hematoxylin followed by ferroin acidified with 2.5 N sulfuric acid to pH 4.0. Mast cells stained an intense orange color that contrasted markedly with bluish violet nuclei. High contrast was also observed when ferroin colored sections were counterstained with light green instead of hematoxylin. To evaluate the specificity of the stain, hamster cheek pouch sections were stained with toluidine blue, alcian blue-safranin O, and ferroin. Quantitative evaluation of mast cells stained with the three techniques showed no statistical difference. The simplicity and selectivity of this method is sufficient for image analysis of mast cells.  相似文献   

15.
The paper contains an account of DNA staining with basic dyes; methyl violet 6B and crystal violet in mammalian tissue sections after RNA extraction with cold concentrated phosphoric acid. The study shows that the best staining is obtained at pHs 2.5 and 3.5. Dehydration of stained nuclei is perfect when a mixture of absolute ethanol and n-butanol is used followed by treatment of sections in isoamyl or amyl alcohol. The in situ absorption data of nuclei stained with aqueous solution of methyl violet 6B as well as with crystal violet are also presented. Possible mechanism of staining as well as an explanation for dye-leaching when sections are dehydrated through ethanol are discussed.  相似文献   

16.
Mounted deparaffinized sections were stained for 30-60 minutes at room temperature in a mixture of equal volumes of 0.1% aqueous solutions of safranin O and fast green FCF filtered before use. They were then washed in distilled water for 5 minutes, blotted, washed in 2 changes of absolute alcohol (2-3 min) and mounted from xylene. The nucleic acids are stained purplish-red, half esters of sulfuric acid orange, and proteins green. The procedure is applicable to a variety of materials fixed in a number of reagents though best results are obtained after acetic-alcohol fixation. Bouin's fluid and 10% neutral formalin are not suitable fixatives for this procedure. After acetic-alcohol fixation, the staining procedure may be used in conjunction with enzyme or extraction technics in order to characterize certain chemical components of cells or tissues. The safranin-fast-green technic has proved useful in investigations of pathological changes in tissues; in the visualization of secretory granules and in studies of cellular differentiation. The technic also would appear to greatly facilitate mitotic index determinations.  相似文献   

17.
Mosquito tissues of cytogenetical importance were dissected out on a slide in 0.65% NaCl, under a dissecting microscope, and treated about 30 sec in a drop of 1:3 Carnoy's fixative diluted 1:19 with distilled water. Fixing and hydrolysis was done by a single step in a mixture consisting of: glacial acetic acid, 1; ethanol 96%, 3; HCl conc., 2; and distilled water, 2 (v/v) for 2-6 min at 20-25 C. The specimen was then rinsed with the acetic-alcohol fixative and covered in a drop of 1% cresyl violet in 50% acetic acid under a coverslip coated with Mayer's albumen. Washing was performed immediately by adding water dropwise to one side of the coverslip and drawing the fluid from the other side with absorbent paper. The preparation could be used either as a temporary slide or made into a durable mount. The DNA-containing bands of the giant polytenic chromosomes stained dark violet; interband regions, weakly stained or colourless against a clear background. Mitotic and meiotic figures in gonadal cells stained selectively dark violet or violet with a practically unstained cytoplasm.  相似文献   

18.
细菌脱色酶TpmD对三苯基甲烷类染料脱色的酶学特性研究   总被引:1,自引:1,他引:1  
从嗜水气单胞菌DN322中分离纯化出能够对三苯基甲烷类染料结晶紫、碱性品红、灿烂绿及孔雀绿进行有效脱色的脱色酶,命名为TpmD。该酶的亚基分子量为29.4kDa,等电点为5.6。该酶催化上述4种三苯基甲烷类染料脱色反应的适合温度为40~60℃,适合pH范围为5.5~9.0。动力学参数测定结果显示TpmD对结晶紫、碱性品红、灿烂绿及孔雀绿的Km值分别为24.3、40.65、4.2、68.5μmol-1.L-1,Vmax值分别为19.6、74.1、82.8、115.6μmol.L-1.s-1。结晶紫为该酶的最适反应底物。TpmD催化的脱色反应依懒于NADH/NADPH及分子氧的存在,显示该酶属于NADH/NADPH依赖型的氧化酶类。这是国内外首次关于细菌中三苯基甲烷类染料脱色酶酶学性质的描述。  相似文献   

19.
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuchsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal viokt-stained organisms with alcoholic safranin (0.25%) for 15 scc will distinguish Gram-positive bacteria (viokt) from Gram-negative bacteria (pink).

Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily dccolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

20.
A resorcin-crystal violet solution of low viscosity injected into the circulatory plexus supplying a tumor is used to identify and characterize functional tumor vessels. Unstained sections of tumor tissue demonstrate heavily stained vascular endothelium with no leakage of stain to extravascular tissue for intact vessels, and little or no background staining. The method is simple to apply for tumor vessel morphology and morphometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号