首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schlichter  D.  Fricke  H. W. 《Hydrobiologia》1991,(1):389-394
The symbiotic coral Leptoseris fragilis lives in the Red Sea at depths of 95–145 m. Symbiotic dinoflagellates (zooxanthellae) themselves possess well known adaptations to low light intensities. In L. fragilis we found indications that light amplifying mechanisms of the host improve photosynthesis of the symbionts. Light of short wavelengths is absorbed by host pigments which transform short into longer wavelengths. The transformed light is more efficient for photosynthesis. Action spectra measurements of photosynthesis demonstrated the amplification of photosynthetically active radiation. Monochromatic light of 387 nm (outside the main absorption maxima of the algal pigments) at subsaturation photon flux densities was as effective photosynthetically as polychromatic light of 415–490 nm, which fits the absorption maxima of the zooxanthellae.  相似文献   

2.
珊瑚礁生态系统初级生产力研究进展   总被引:1,自引:3,他引:1  
珊瑚礁生态系统由珊瑚礁生物群落及其周围的海洋环境共同组成。该生态系统具有很高的生产力和生物多样性而引起科学家的重视 ,特别是高初级生产力。初级生产力的贡献者包括底栖植物、浮游植物、共生藻和自养细菌等。初级生产力的测定方法较多 ,各有利弊 ,通常采用 1 4C同位素法。在初级生产力中 ,新生产力更引起科学界关注。对于新生产力的测定 ,主要应用 1 5N示踪法 ,采用“f”比或 Redfield比值来估算。为了减少误差 ,一般同时使用几种方法。光是影响初级生产力的主要因素 ,而对新生产力构成限制的主要因素是氮源。珊瑚礁生态系统初级生产力研究较多 ,但新生产力却很少。未来科学界研究重点在于珊瑚礁生态系统初级生产力和新生产力的动力学效应  相似文献   

3.
不同光质LED光源对草莓光合特性、产量及品质的影响   总被引:12,自引:0,他引:12  
以‘妙香7号’草莓品种为材料,利用LED精量调制光源,设红光、蓝光、黄光、白光、红/蓝/黄(7/2/1)、红/蓝(7/2) 5个处理,以白光为对照,测定了草莓叶片的光合与荧光参数、色素含量、果实产量、品质和根系活力指标,研究 500 μmol·m-2·s-1光强下不同光质处理对草莓光合特性、果实产量及品质的影响.结果表明: 红光处理有利于提高草莓叶片的净光合速率与蒸腾速率,而蓝光有减弱作用;气孔导度与胞间CO2浓度均以蓝光处理效果最为显著.叶绿素荧光参数(Fo、Fm、ΦPSⅡ)均在红光处理下最大,而Fv/Fm、Fv/Fo、Fm/Fo均在红/蓝/黄处理下最大;红/蓝/黄处理下草莓色素含量、果实产量和根系活力均显著高于其他处理.红光处理的可溶性固形物和维生素C含量均最高,且与红/蓝/黄处理差异不显著;蓝光处理有利于提高可滴定酸和蛋白质含量,而红/蓝/黄处理的固酸比最大.红/蓝/黄处理最有利于增加光合色素含量,提高果实产量,促进部分品质改善.  相似文献   

4.
1. We studied the seasonal dynamics of suspended particulate matter in a turbid, large shallow lake during an annual period (2005–06). We relate the patterns of seston concentration (total suspended solids), phytoplankton biomass and water transparency to the seasonal pattern of incident solar radiation (I0). We also report the seasonal trends of phytoplankton primary production (PP) and photosynthesis photoinhibition due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (Iβ and UV50). 2. We first collected empirical evidence that indicated the conditions of light limitation persisted during the study period. We found that the depth‐averaged irradiance estimated for the time of the day of maximum irradiance (Imean–noon) was always lower than the measured onset of light saturation of photosynthesis (Ik). 3. We then contrasted the observations with theoretical expectations based on a light limitation scenario. The observed temporal patterns of seston concentration, both on a volume and area basis, were significantly explained by I0 (R2 = 0.39 and R2 = 0.37 respectively). The vertical diffuse attenuation coefficient (kdPAR) (R2 = 0.55) and the depth‐averaged irradiance (Imean) (R2 = 0.66), significantly increased with the I0; while the irradiance reaching the lake bottom (Iout) significantly decreased with the incident irradiance (R2 = 0.49). However, phytoplankton biovolume maxima were not coincident with the time of the year of maximum irradiance. 4. A significant positive relationship was observed between PP estimated on an area basis and I0 (R2 = 0.51, P < 0.001). In addition, the parameters describing the photosynthetic responses to high irradiances displayed marked seasonal trends. The photosynthesis photoinhibition due to PAR as well as to UV were significantly related to incident solar radiation (PAR: R2 = 0.73; UV: R2 = 0.74). These results suggest adaptation of the phytoplankton community in response to changes in incident solar radiation.  相似文献   

5.
濒危植物银杉幼树对生长光强的季节性光合响应   总被引:29,自引:1,他引:29  
银杉(Cathayaargyrophylla)是我国松科中特有的单种属植物,被认为处于濒危状态。在对银杉群落多年调查研究的基础上,针对银杉幼树生长过程对光强的需求特性,我们开展了银杉幼树对光的适应性研究。试验在人工培育的银杉苗圃地,采用遮荫的方法设置不同的光环境处理(100%、45%和3%自然光强),利用气体交换技术和叶绿素荧光技术测定了3种光强下银杉叶片光合生理指标的变化,探讨了不同光环境下银杉幼树光合能力在夏季和冬季的变化及其对生长光强的响应等。结果表明:在夏季银杉生长旺盛时期,遮荫导致叶片最大光合速率(Pnmax)、羧化效率(CE)下降,但不同叶龄叶片的下降幅度不同。随生长光强的下降,银杉幼树的光补偿点(LCP)和光饱和点(LSP)有所降低,但全晴天时,低光强(3%自然光强)条件下实际的光辐射量高于当年生叶片光补偿点的累积时间约6h,而且与光饱和的区域相差极大,造成全天碳同化量低,同化物累积少,严重影响了银杉幼树的正常生长。在不同处理中全光强条件下银杉幼树长势最好,45%光强条件下幼树生长减慢。冬季银杉最大光合速率(Pnmax)、羧化效率(CE)值均低于夏季,光补偿点(LCP)和光饱和点(LSP)也较夏季降低。全光照条件下无论是当年生叶片和一年生叶片,在冬季均出现了轻微光抑制现象,适度遮荫有利于银杉抵御冬季光抑制。无论在遮荫或不遮荫条件下,冬季银杉叶片将所吸收的相对过剩光能通过非辐射途径耗散出去,表现出一种光保护策略。  相似文献   

6.
Factors related to autochthonous production were investigated at several sites along a prairie stream at Konza Prairie Research Natural Area. Primary production, algal biomass, litter input, and ability of floods to move native substrate were measured. Additional experiments were conducted to establish the influence of light and water velocity on primary production rates and recovery of biomass following dry periods. The study period encompassed two extreme (> 50 year calculated return time) floods, thus we were able to analyze the effects of scour on periphyton biomass and productivity. Biomass of sedimentary algae was reduced greatly by flooding and did not reach preflood amounts during the 2 months following the first flood. Rates of primary production associated with sediments recovered to levels above preflood rates within 2 weeks. Biomass of epilithic periphyton was not affected as severely as that of sedimentary algae. Little relationship was observed between water velocity and photosythetic rates. Production reached maximum rates at 25% of full sun light. Epilithic chlorophyll levels recovered within eight days following a dry period, and chl a was an order of magnitude greater on rocks than sediments 51 days after re-wetting. Estimated annual rates of primary production were 2.6 times greater in the prairie than in the forest reaches of the stream. The ratio of annual autochthonous:allochthonous carbon input was 4.81 for prairie and 0.32 for the forest. Periphyton production in prairie streams is resilient with regard to flooding and drought and represents a primary carbon source for the system.  相似文献   

7.
  1. While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.
  2. Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.
  3. The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.
  4. Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.
  5. Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.
  相似文献   

8.
Climate change threatens coral reefs across the world. Intense bleaching has caused dramatic coral mortality in many tropical regions in recent decades, but less obvious chronic effects of temperature and other stressors can be equally threatening to the long‐term persistence of diverse coral‐dominated reef systems. Coral reefs persist if coral recovery rates equal or exceed average rates of mortality. While mortality from acute destructive events is often obvious and easy to measure, estimating recovery rates and investigating the factors that influence them requires long‐term commitment. Coastal development is increasing in many regions, and sea surface temperatures are also rising. The resulting chronic stresses have predictable, adverse effects on coral recovery, but the lack of consistent long‐term data sets has prevented measurement of how much coral recovery rates are actually changing. Using long‐term monitoring data from 47 reefs spread over 10 degrees of latitude on Australia's Great Barrier Reef (GBR), we used a modified Gompertz equation to estimate coral recovery rates following disturbance. We compared coral recovery rates in two periods: 7 years before and 7 years after an acute and widespread heat stress event on the GBR in 2002. From 2003 to 2009, there were few acute disturbances in the region, allowing us to attribute the observed shortfall in coral recovery rates to residual effects of acute heat stress plus other chronic stressors. Compared with the period before 2002, the recovery of fast‐growing Acroporidae and of “Other” slower growing hard corals slowed after 2002, doubling the time taken for modest levels of recovery. If this persists, recovery times will be increasing at a time when acute disturbances are predicted to become more frequent and intense. Our study supports the need for management actions to protect reefs from locally generated stresses, as well as urgent global action to mitigate climate change.  相似文献   

9.
Batrachospermum turfosum Bory is one of the generalists among the few red algae that have adapted to freshwater habitats, occurring in a variety of primarily shaded, nutrient-poor micro-habitats with lotic (running) or lentic (standing) waters. Seasonal variations in water level and canopy cover can expose this sessile alga to widely fluctuating temperatures, solar irradiation and nutrient availability. Here we report on the ecophysiology of B. turfosum collected from an ultra-oligotrophic bog pool in the Austrian Alps. Photosynthesis as a function of photon fluence density (PFD) and temperature was studied by measuring oxygen evolution in combination with chlorophyll fluorescence. In addition, the effects of ultraviolet radiation (UVR) on photosynthetic pigments were analysed using HPLC and spectrophotometric methods, and cellular ultrastructure was studied using transmission electron microscopy. We found that B. turfosum is adapted to low light, with a light compensation point (Ic) and a light saturation point (Ik) of 8.4 and 29.7 µmol photons m–2 s–1, respectively, but also tolerates higher PFDs of ~1000 µmol photons m–2 s–1, and is capable of net photosynthesis at temperatures between 5°C and 35°C. Exposure to either UV-A or UV-AB for 102 h led to a strong transient drop in effective quantum yield (ΔF/FM’), followed by an acclimation to about 70% of initial ΔF/FM’ values. Ultrastructural changes included the accumulation of plastoglobules and dilated membranes after UVR treatment. Although all photosynthetic pigments strongly decreased upon UVR exposure and no UV-photoprotectants (e.g. mycosporine-like amino acids) could be detected, the alga was capable of recovering ΔF/FM’ and phycobiliproteins after UVR treatment. In summary, B. turfosum tolerates a wide range of irradiation and temperature regimes, and these traits may be the basis for its successful adaptation to challenging environments.  相似文献   

10.
Primary production measurements were carried out simultaneously, using two laboratory systems with different light conditions: (1) a'classical' incubator and (2) a Laboratory Scale Enclosure. The model used for calculating primary production (STEELE, 1965) does not correct for spectral changes caused by high phytoplankton biomass. In the incubator, light of almost all wavelengths decreased more or less according to the attenuation of total PhAR in water. In the LSE, high absorption was found of the blue light and some of the red light, which was due to the high sestonic concentration. The Steele function provided a good fit for both sets of data. The depth integrated gross production values derived from the simultaneous measurements were not significantly different.  相似文献   

11.
Abstract The cyanobacterium Oscillatoria agardhii was grown in turbidostat cultures with the light energy supply in either the continuous mode or in the pulsed mode (8/16 h light/dark (L/D) cycle). The light irradiance value used was sufficient to allow the maximal growth rate to be attained, when supplied continuously. Adaptation of O. agardhii to the L/D cycle was characterized by an increase in pigment content and photosynthetic performance, accompanied by a decrease in growth rate. This mode of adaptation resembled the adaptation of O. agardhii to continuous low light intensities. It is suggested that in this case the L/D cycle provokes this adaptation in order to allow the cells to accumulate carbohydrate rapidly during the light period. This was attributed to the storage of polyglucose, which served as a carbon and energy source for growth in the dark. The utilization of polyglucose in the dark was able to sustain the synthesis of all other cell components at the same rate as when cells were growing in the light. The growth yield in the dark, whilst metabolizing internally stored polyglucose, was 0.52 g cell C/g polyglucose C, or 0.62 g cell dry weight/g polyglucose. Although in the pulsed mode there is a 66% loss in light irradiance per 24 h when compared with a continuous light regime, the growth rate of the cyanobacteria grown in the pulsed mode was only 35% lower than the growth rate of a culture grown in continuous light. This can be explained by a high growth yield in the dark and by increased CO2 fixation rates in the light of cells grown in the pulsed mode.  相似文献   

12.
One of the most critical challenges facing ecologists today is to understand the changing geographic distribution of species in response to current and predicted global warming. Coastal Western Australia is a natural laboratory in which to assess the effect of climate change on reef coral communities over a temporal scale unavailable to studies conducted solely on modern communities. Reef corals composing Late Pleistocene reef assemblages exposed at five distinct localities along the west Australian coast were censused and the results compared with coral occurrence data published for the modern reefs offshore of each locality. The resulting comparative data set comprises modern and Late Pleistocene reef coral communities occurring over approximately 12° of latitude. For the modern reefs this gradient includes the zone of overlap between the Dampierian and Flindersian Provinces. Modern reef coral communities show a pronounced gradient in coral composition over the latitudinal range encompassed by the study, while the gradient in community composition is not as strong for Pleistocene communities. Tropical‐adapted taxa contracted their ranges north since Late Pleistocene time, emplacing two biogeographic provinces in a region in which a single province had existed previously. Beta diversity values for adjacent communities also reflect this change. Modern reefs show a distinct peak in beta diversity in the middle of the region; the peak is not matched by Pleistocene reefs. Beta diversity is correlated with distance only for comparisons between modern reefs in the north and the fossil assemblages, further supporting change in distribution of the biogeographic provinces in the study area. Coral taxa present in modern communities clearly expanded and contracted their geographic ranges in response to climate change. Those taxa that distinguish Pleistocene from modern reefs are predicted to migrate south in response to future climate change, and potentially persist in ‘temperature refugia’ as tropical reef communities farther north decline.  相似文献   

13.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   

14.
Coral reefs provide a range of important services to humanity, which are underpinned by community‐level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species‐specific abundances in the field. For colonial animals such as reef‐building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates — calcification, respiration, and photosynthesis — considering the colony size for six prominent, reef‐building coral taxa in Mo''orea, French Polynesia. After a seven‐day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area‐specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony‐size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef‐building coral physiology not only improves our understanding of community‐level coral reef functioning but it may also explain species‐specific responses to disturbances.  相似文献   

15.
Vegetation light use efficiency is a key physiological parameter at the canopy scale, and at the daily time step is a component of remote sensing algorithms for scaling gross primary production (GPP) and net primary production (NPP) over regional to global domains. For the purposes of calibrating and validating the light use efficiency ( ε g) algorithms, the components of ε g– absorbed photosynthetically active radiation (APAR) and ecosystem GPP – must be measured in a variety of environments. Micrometeorological and mass flux measurements at eddy covariance flux towers can be used to estimate APAR and GPP, and the emerging network of flux tower sites offers the opportunity to investigate spatial and temporal patterns in ε g at the daily time step. In this study, we examined the relationship of daily GPP to APAR, and relationships of ε g to climatic variables, at four micrometeorological flux tower sites – an agricultural field, a tallgrass prairie, a deciduous forest, and a boreal forest. The relationship of GPP to APAR was close to linear at the tallgrass prairie site but more nearly hyperbolic at the other sites. The sites differed in the mean and range of daily ε g, with higher values associated with the agricultural field than the boreal forest. εg decreased with increasing APAR at all sites, a function of mid‐day saturation of GPP and higher ε g under overcast conditions. ε g was generally not well correlated with vapor pressure deficit or maximum daily temperature. At the agricultural site, a ε g decline towards the end of the growing season was associated with a decrease in foliar nitrogen concentration. At the tallgrass prairie site, a decline in ε g in August was associated with soil drought. These results support inclusion of parameters for cloudiness and the phenological status of the vegetation, as well as use of biome‐specific parameterization, in operational ε g algorithms.  相似文献   

16.
The purpose of this study was to assess degradation and utilization of the mucus produced by 3 coral reef Anthozoa (Sarcophyton, Fungia and Acropora) by microorganisms. This was achieved by carrying out long term in situ incubations at Nouméa lagoon (New Caledonia).The microbial population including bacterial and eukaryotic cells was monitored by cell counts, cultures of mucus degraders, and by estimation of microbial activity from the pool of adenylates and enzymatic activity. In addition the chemical composition (C and N) of the mucus was monitored and its morphological features were observed by scanning electron microscope (SEM).Only slight differences were found between the 3 types of mucus studied. On the whole, they follow the same pattern of change. After a short bacterial growth phase (4 days), a bloom of eukaryotes (Flagellates, Ciliates and Diatoms) was observed. This eukaryote population remained constant for at least 10 days. A similar pattern has been described in the breakdown of detritus of plant origin.Several observations suggest that bacteria utilize only certain components of mucus, the most widely used being proteins, triglycerides and wax esters; these latter two compounds are known to be the dissolved photosynthetic products released by zooxanthellae during mucus secretion. Neither bacteria nor eukaryotes completely degrade the mucus web even after 21 days of incubation. The likelihood that mucus excretion is a defensive reaction against physical and chemical stresses might explain why mucus is a poor, or even inhibiting medium for the bacterial degraders isolated from the mucus itself.  相似文献   

17.
C. Berger 《Hydrobiologia》1989,185(3):233-244
During the entire period of research from 1971 to 1982 Oscillatoria agardhii Gomont was overwhelmingly present in the Wolderwijd. Six years of measurements of primary production has pointed out that the gross production per day firstly is related to temperature and secondly to irradiation. However, the production per year is neither related to temperature nor to irradiation. In a cold summer gross production is as high as in a warm summer due to higher production in the lower part of the euphotic zone.In the discussion attention is focused on production characteristics and light climate in relation to the morphometry of the lake. Up to an average depth of 2.5 m blooming of O. agardhii occurs easily, whilst light saturated production achieves its maximum between 2.0 and 2.5 m depth. Increasing depth leads to photo-inhibition in the upper layers followed by lowering of light saturated production. Only special circumstances such as days with microstratification allow growth, resulting then in a monoculture of the alga.  相似文献   

18.
Photosynthesis–irradiance relationships of macroalgal communities and thalli of dominant species in shallow coastal Danish waters were measured over a full year to test how well community production can be predicted from environmental (incident irradiance and temperature) and community variables (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy height and species richness. The close relationship of community photosynthesis to irradiance is due to the fact that (1) large differences in thallus photosynthesis of individual species are averaged out in communities composed of several species, (2) seasonal replacement of species keeps communities metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide spatial scales in coastal waters by measurements of vegetation cover, incoming irradiance and canopy absorptance.  相似文献   

19.
A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100molmol–1CO2in air in one sample of a well-developed algal mat was saturated at 309mol photons m–2s–1, but increased with increasing ambient CO2concentrations (350 and 1000mol mol–1CO2) in the measuring chamber. Net CO2assimilation was 0.8mol CO2m–2s–1at 100mol mol–1CO2, 5.9mol CO2m–2s–1at 350mol mol–1CO2and 9.8mol CO2m–2s–1at 1000mol mol–1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.  相似文献   

20.
Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species (Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10–35 randomly selected local donor colonies will retain at least 50–90% of the genetic diversity of the original population. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号