首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A core-class 2 tetrasaccharide-linked serine was synthesized in a convergent manner. The coupling reaction of disaccharide glycosyl donor 3 and acceptor 4 stereoselectively afforded tetrasaccharide 15, which was converted to glycosyl fluoride 20. Glycosylation of Fmoc serine allyl ester 5 with 20 produced α- and β-glycosides in 40% and 33% yields, respectively. α-Isomer 21 was converted into 1, a useful building block for the solid-phase synthesis of glycopeptides. On the other hand, 21 was N-deprotected and condensed with hydrophobic cholestanol through a succinyl spacer. The same compound was alternatively synthesized by coupling 20 and 28. Functional group manipulation and hydrogenation afforded core 2 tetrasaccharide-cholestanol conjugate 2.  相似文献   

2.
3-Aminopropyl glycoside of 3,2'-di-O-alpha-L-fucosyl-N-acetyllactosamine (Ley tetrasaccharide) was synthesized. The glycosyl donor, 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl bromide, was coupled with glycosyl acceptor, 1,6-anhydro-2-acetamido-2-deoxy-beta-D-glucopyranose or its 3-O-acetyl derivative, to give the corresponding N-acetyllactosamine derivatives in 20 and 71% yields, respectively. The glycosyl donor was synthesized from 1,2-di-O-acetyl-3,4,6-tri-O-benzoyl-D-galactopyranose, which was obtained by the treatment of benzobromogalactose with sodium borohydride to yield 1,2-O-benzylidene derivative and subsequent removal of benzylidene group and acetylation. Acidic methanolysis of the disaccharide derivatives resulted in the selective removal of one or both acetyl groups to give the disaccharide acceptor bearing hydroxy groups at C3 of the glucosamine residue and C2 of the galactose residue. The introduction of fucose residues in these positions by the treatment with tetrabenzylfucopyranosyl bromide resulted in a tetrasaccharide derivative, which was converted into 3,2'-di-O-alphha-L-fucopuranosyl- 1,6-anhydro-N-acetyllactosamine peracetate after substitution of acetyl groups for benzoyl and benzyl groups. Opening of the anhydro ring by acetolysis resulted in peracetate, which was then converted into the corresponding oxazoline derivative in two steps. Glycosylation of the oxazoline derivative with 3-trifluoroacetamidopropan-1-ol and removal of O-acetyl and N-trifluoroacetyl protective groups resulted in a free spacered Ley tetrasaccharide.  相似文献   

3.
M Mylvaganam  L Meng  C A Lingwood 《Biochemistry》1999,38(33):10885-10897
Two types of oxidative cleavage of the double bond of glycosphingolipids (GSLs) are described. Oxidation of peracetylated GSL precursors with stoichiometric proportions of KMnO4 and an excess of NaIO4, in a neutral aqueous tert-butanol solvent system, gave nearly quantitative yields of the glycosyl ceramide acid, 2-hydroxy-3-(N-acyl)-4-(O-glycosyl)oxybutyric acid [Mylvaganam, M., and Lingwood, C. A. (1999) J. Biol. Chem. 274, 20725-20732]. However, if the reaction medium was made alkaline, the hydroxyallylic function of the sphingolipid, as a whole, was oxidized and the glycosyl serine acid, 2-(N-acyl)-3-(O-glycosyl)oxypropionic acid, was obtained in good yield. This represents a new type of oxidation reaction. Optimized conditions gave glycosyl ceramide or serine acids with greater than 90% selectivity and in good yields (90%). Oxidation of dGSLs gave serine and ceramide oligosaccharides, devoid of hydrocarbon chains. An intriguing glycosyl species containing 5-hydroxy-4-oxo-3-hydroxy-2-(N-acyl)sphingosine (hydroxy-acyl intermediate) was identified via ESMS analyses. We propose that further oxidation of this intermediate is pH-dependent and will be oxidized to either serine or ceramide acids. On the basis of MS-MS analysis of specific homologues of serine and ceramide acids, two types of collision-induced dissociation (CID) patterns have been established. These CID patterns were then used in the identification of serine and ceramide acids synthesized from natural GSL samples. Also, on a qualitative basis, this oxidation protocol, in conjunction with ESMS, provides a novel method for characterizing the aglycone composition (acyl chain length, unsaturation position, dihydrosphingosine content, etc.) of natural GSLs. A novel class of neohydrocarbon conjugates were synthesized by coupling the acids to rigid hydrocarbon frames such as 2-aminoadamantane. Preliminary studies with conjugates derived from globotriaosyl ceramide (Gb3C), lactosyl ceramide (LC), and galactosyl ceramide (GalC) bound verotoxin with the expected specificity but with affinities much greater than that of the natural glycolipid. Also, the ceramide acid-based conjugates were better ligands than serine acid conjugates.  相似文献   

4.
Lee YJ  Baek JY  Lee BY  Kang SS  Park HS  Jeon HB  Kim KS 《Carbohydrate research》2006,341(10):1708-1716
Glycosylation of various glycosyl acceptors with 2'-carboxybenzyl (CB) 2,3,4,6-tetra-O-benzyl-beta-D-glucopyranoside and CB 2,3,4,6-tetra-O-benzyl-alpha-D-mannopyranoside as glycosyl donors afforded alpha-C-glycosides exclusively or predominantly in good yields. CB glycosides were also converted to other well-known glycosyl donors, the corresponding phenyl thioglycoside and the glycosyl fluoride derivatives.  相似文献   

5.
O-Glycosylated amino acids containing the tumor-associated T(Tf)-antigen (beta-D-Gal-(1-->3)-alpha-D-GalNAc) disaccharide unit were conveniently synthesized in seven steps starting from D-galactose via an n-pentenyl glycoside (NPG) building block. Azidonitration of 3,4,6-tri-O-acetyl-D-galactal, followed by nitrate displacement with simultaneous acetate hydrolysis with sodium 4-penten-1-oxide, afforded n-pentenyl 2-deoxy-2-azidogalactoside (3) in near quantitative yield. Subsequent high-yielding transformations resulted in the synthesis of the key glycosyl donor n-pentenyl beta-disaccharide 5 that was employed for the stereospecific preparation of glycosyl amino acids via NIS-promoted glycosylations with serine or threonine acceptors. The surprising utility of the reaction of sodium 4-penten-1-oxide with anomeric nitrates encouraged the detailed exploration of the action of a variety of nucleophiles on anomeric nitrates for the synthesis of useful 2-azido glycosyl donors directly from the 'classic' Lemieux azidonitration product of protected galactals. This expedient synthesis (28% overall yield from 1 to 7a) that makes use of heretofore rarely exploited pentenyl 2'-azidoglycosides, should be a valuable entry in the armamentarium of routes to biologically relevant glycopeptides in both mono- and multivalent forms.  相似文献   

6.
New acylated 5-thio-beta-D-glucopyranosylimino-disusbstituted 1,3,4-thiadiazols 8, and 11 were prepared, via spontaneous rearrangements, by cycloaddition of the glycosyl isothiocyanate 2 with the reactive intermediates 1-aza-2-azoniaallene hexachloroantimonates 4 and 6, respectively. Reaction of 2 with aminoacetone or chloroethylamine afforded the acylated 5-thio-beta-D-glucopyranosyl-4-imidazoline-2-thione nucleoside 16 and glucopyranosylamino-2-thiazoline derivative 18, respectively. Deblocking of 8, 11, 17 and 19 furnished the free nucleoside analogues 9, 12, 18 and 20, respectively. Analogously, treatment of 2 with chloroethylamine in the 1:2 ratio afforded the thioureylendisaccharide 21. No in vitro antiviral activity against HIV-1, HIV-2, human cytomegallovirus (HMCV), has been found for the new synthesized compounds.  相似文献   

7.
The glycosyl donor, hepta-O-benzyl-beta-lactosyl trichloroacetimidate (4) was prepared by treating hepta-O-benzyl-lactose with trichloroacetonitrile in the presence of potassium carbonate. The acceptor, methyl 2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (8) was synthesized by hydrolysis of a 3,4-butane diacetal of methyl L-glycero-alpha-D-manno-oct-enopyranoside and subsequent benzylidenation. Glycosidation of the donor 4 with the acceptor 8 in 1,4-dioxane using Me(3)SiOTf as a promoter for 1 h at room temperature gave methyl (2,3,4,6-tetra-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl)-(1-->3)-2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (9) as a major product (59%). The oct-enopyranoside moiety of the trisaccharide 9 was converted to a heptopyranoside (80%) by oxidative cleavage with OsO(4)-NaIO(4) and subsequent reduction. Hydrogenolysis of the resulting trisaccharide and subsequent acetylation gave the peracetate of alpha-lactosyl-(1-->3)-Hep. Deacetylation of the peracetate afforded the title trisaccharide.  相似文献   

8.
Lin L  He XP  Xu Q  Chen GR  Xie J 《Carbohydrate research》2008,343(4):773-779
Beta-C-Glucosyl and beta-C-galactosyl-1,4-dimethoxynaphthalenes have been synthesized using a F3CCO2Ag/SnCl4 promoted Friedel-Crafts electrophilic substitution reaction. Both glycosyl acetates and methyl glycosides can be used as glycosyl donors. Further oxidation afforded the corresponding beta-C-glycosyl-1,4-naphthoquinones. The in vitro cytotoxic activity of these compounds was evaluated against the A375 cell line.  相似文献   

9.
O-(2-Deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)- O-(beta-D- glucopyranosyluronic acid)-(1----4)-1,6-anhydro-2-deoxy-2-sulfamido-6-O-sulfo-beta-D-gl ucopyranose pentasodium salt (14) was synthesized as a heparin-related oligosaccharide. The glycosyl acceptor (derived from cellobiose) and a glycosyl donor, 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide, were coupled in the presence of mercuric bromide and molecular sieves 4A to afford a 69% yield of fully protected trisaccharide, namely, O-(6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1 ----4)- O-(methyl 2,3-di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-3-O-acetyl- 1,6-anhydro-2 - azido-2-deoxy-beta-D-glucopyranose (10), which was converted into the partially sulfated trisaccharide 14. Compound 10 also underwent acetolysis to afford the glycosyl acetate, for further elongation of the glycosyl chain.  相似文献   

10.
Horton D  Khare A 《Carbohydrate research》2006,341(16):2631-2640
The methyl beta-glycoside of the title sugar, obtained from 2-deoxy-2-fluoro-beta-D-glucopyranose tetraacetate by a sequence with detailed characterization of all intermediates, was converted by acetolysis-bromination into 3,4-di-O-acetyl-2,6-dideoxy-2-fluoro-alpha-L-talopyranosyl bromide, coupling of which with (7S,9S)-4-demethoxydaunomycinone afforded the 3,4-diacetate of 4-demethoxy-9-O-(2,6-dideoxy-2-fluoro-alpha-L-talopyranosyl)daunomycinone (19). The antitumor-active 19 was converted by way of its 14-bromo derivative into the 14-hydroxy analogue, the antitumor-active 4-demethoxyadriamycinone glycoside 21.  相似文献   

11.
tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was readily transformed into the disaccharide glycosyl donor, 3,4,6-tri-O-acetyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-alpha/beta-D-glucopyranosyl trichloroacetimidate, and the disaccharide glycosyl acceptor, tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside. A TMSOTf-catalysed coupling of the acceptor with the donor afforded the respective tetrasaccharide derivative, which can be transformed to chitotetraose. tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was converted into donor 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl trichloroacetimidate. Its coupling with benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, followed by dephenoxyacetylation, gave benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, whose glycosylation furnished, after replacement of the DMM-group by the acetyl moiety and subsequent deprotection, chitohexaose.  相似文献   

12.
The first synthesis of a d-rhamnose branched tetrasaccharide, corresponding to the repeating unit of the O-chain from Pseudomonas syringae pv. cerasi 435, as methyl glycoside is reported. The approach used is based on the synthesis of an opportune building-block, that is the methyl 3-O-allyl-4-O-benzoyl-alpha-D-rhamnopyranoside, which was then converted into both a glycosyl acceptor and two different protected glycosyl trichloroacetimidate donors. Successive couplings of these three compounds afforded the target oligosaccharide. The reported synthesis is also useful to perform the oligomerization of the repeating unit.  相似文献   

13.
Zhao W  Kong F 《Carbohydrate research》2005,340(10):1673-1681
Beta-D-Xylp-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->4)]-alpha-D-Manp, the fragment of the exopolysaccharide from Cryptococcus neoformans serovar C, was synthesized as its methyl glycoside. Thus, chloroacetylation of allyl 3-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranoside (1) followed by debenzylidenation and selective 6-O-benzoylation afforded allyl 2-O-chloroacetyl-3-O-acetyl-6-O-benzoyl-alpha-D-mannopyranoside (4). Glycosylation of 4 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate (5) furnished the beta-(1-->4)-linked disaccharide 6. Dechloroacetylation gave the disaccharide acceptor 7 and subsequent coupling with 5 produced the trisaccharide 8. Deacetylation of 8 gave the trisaccharide acceptor 9 and subsequent coupling with a disaccharide 10 produced the pentasaccharide 11. Reiteration of deallylation and trichloroacetimidate formation from 11 yielded the pentasaccharide donor 12. Coupling of a disaccharide acceptor 13 with 12 afforded the heptasaccharide 14. Subsequent deprotection gave the heptaoside 16, while selective 2-O-deacetylation of 14 gave the heptasaccharide acceptor 15. Condensation of 15 with glucopyranosyluronate imidate 17 did not yield the expected octaoside, instead, an orthoester product 18 was obtained. Rearrangement of 18 did not give the target octaoside; but produced 15. Meanwhile, there was no reaction between 15 and the glycosyl bromide donor 19.  相似文献   

14.
The chemical synthesis of the title compounds as maltose analogs, in which the non-reducing end is modified by acetylation of the 4'-OH group or by reversing its configuration, is reported. For synthesis of the 4'-O-acetylated analog, beta-maltose was converted into its per-O-benzylated-4',6'-O-benzylidene derivative followed by removal of the benzylidene acetal function and selective silylation at C-6'. Acetylation at C-4' of the obtained silylated compound followed by removal of the benzyl ether protecting groups and subsequent desilylation afforded the desired analog. The other maltose analog was synthesized via the glycosidation reaction between the glycosyl donor, O-(2,3,4,6-tetra-O-benzyl-alpha/beta-D-galactopyranosyl)trichloroacetimidate and the glycosyl acceptor, phenyl 2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside followed by removal of the phenylthio group and debenzylation to provide the desired analog.  相似文献   

15.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

16.
A library composed of a complete set of fucopyranosyl-galactopyranosides was synthesized. A perbenzylated phenylthio fucopyranoside and a series of tri-O-benzyl-galactopyranosyl fluorides having single hydroxyl groups at the 2-, 3-, 4-, and 6-positions were used as the glycosyl donor and glycosyl acceptors, respectively. The chosen set of functionalities at the anomeric centers enabled rapid access to the oligosaccharides based on chemoselective activation. The first coupling reaction was achieved by the action of dimethyl(methylthio)sulfonium trifluoromethanesulfonate (DMTST). The resulting disaccharide fluoride was readily activated by hafnocene bistrifluoromethanesulfonate [Cp2Hf(OTf)2] and glycosidated with n-octanol.  相似文献   

17.
Zhao W  Kong F 《Carbohydrate research》2004,339(10):1779-1786
beta-D-Xylp-(1-->4)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp, the fragment of the exopolysaccharide from Cryptococcus neoformans serovar B, was synthesized as its methyl glycoside. Thus, acetylation of allyl 3-O-benzoyl-4,6-O-benzylidene-alpha-D-mannopyranoside (1) followed by debenzylidenation and selective 6-O-benzoylation afforded allyl 2-O-acetyl-3,6-di-O-benzoyl-alpha-D-mannopyranoside (4). Glycosylation of 4 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate (5) furnished the beta-(1-->4)-linked disaccharide 6. Deallylation followed by trichloroacetimidate formation gave the disaccharide donor 8, and subsequent coupling with allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-4,6-di-O-benzoyl-alpha-D-mannopyranoside (9), produced the tetrasaccharide 10. Reiteration of deallylation and trichloroacetimidate formation from 10 yielded the tetrasaccharide donor 12. The downstream disaccharide acceptor 18 was obtained by condensation of 5 with methyl 3-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranoside, followed by debenzylidenation, benzoylation, and selective 3-O-deacetylation. Coupling of 18 with 12 afforded the hexasaccharide 19, and subsequent deprotection gave the hexasaccharide glycoside 20. Selective 2"-O-deacetylation of 19 gave the hexasaccharide acceptor 21. Condensation of 21 with glucopyranosyluronate imidate 22 did not produce the expected heptasaccharide glycoside; instead, a transacetylation product 19 was obtained. Meanwhile, there was no reaction between 21 and the bromide donor 23.  相似文献   

18.
1. The extent of racemization and the coupling yield in peptide synthesis were studied under high dilution conditions. The azide method yielded the best results. 2. Five linear penta-peptide precursors related to gramicidin S were subjected to cyclization in order to study how the difference in the sequence influences the yield and the ratio of cyclic dimer to monomer. The azide with the sequence of -L -Pro-L -Val-L -Orn(Z)-L -Leu-D -Phe- afforded diZ-gramicidin S in a high yield of 63%. 3. Alternaria mali toxin III, a cyclotetradepsipeptide phytotoxin, was synthesized. The activated linear tetradepsipeptide containing a D -Dap(Z) (N3-Z-D -2,3-diaminopropionic acid) residue at the N-terminus afforded the cyclic precursor (53%). The Dap residue in the precursor was converted into a ΔAla residue by Hofmann degradation to give the desired product.  相似文献   

19.
A tunicaminyluracil derivative, which is a key component of the tunicamycin nucleoside antibiotics, was synthesized using a samarium diiodide (SmI2) mediated aldol reaction and intramolecular Pummerer reaction as the key steps. The alpha-phenylthio ketone 11, the precursor of the samarium enolate, was prepared from D-galactose. Treatment of 11 with SmI2 at -40 degrees C resulted in complete conversion to the corresponding samarium enolate, and subsequent addition of uridine 5'-aldehyde 12 afforded the desired aldol products 13a,b. Compound 13a was converted to the sulfoxide 15 by a sequential diastereoselective reduction of the ketone and an oxidation with mCPBA. Activation of 15 with Tf2O provided the desired cyclized compound 17. In this reaction, the aldol product 13a was also obtained as a consequence of a competitive intramolecular version of DMSO-oxidation via a 7-membered ring intermediate. Compound 18 or 19 are ready for use as a glycosyl donor in glycosylations to provide a range of analogues as potential glycosyltransferase inhibitors as well as related natural products.  相似文献   

20.
Ethyl 2-deoxy-3,5-di-O-p-nitrobenzoyl-1-thio-2-(trifluoroacetamido)-beta-D-arabinofuranoside (3) was converted into the glycosyl chloride. Condensation of the latter with 2,4-dimethoxypyrimidine, followed by amination, gave 1-(2-amino-2-deoxy-alpha-D-arabinofuranosyl)cytosine (6), which was also obtained from the alpha-D anomer (4) of 3. Similarly, 1-(2-amino-2-deoxy-alpha-D-arabinopyranosyl)cytosine (12) was synthesized from ethyl 2-deoxy-3,4-di-O-p-nitrobenzoyl-1-thio-2-(trifluoroacetamido)-alpha-D-arabinopyranoside (9). The p.m.r. spectra of these nucleosides, as well as those of the 1-thioglycosides, are discussed in terms of the conformation of the sugar portion. In particular, a large change of the J1,2 coupling constants of the alpha-D-furanosides, according to the substituents at C-1 and C-2, was interpreted on the basis of conformational mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号